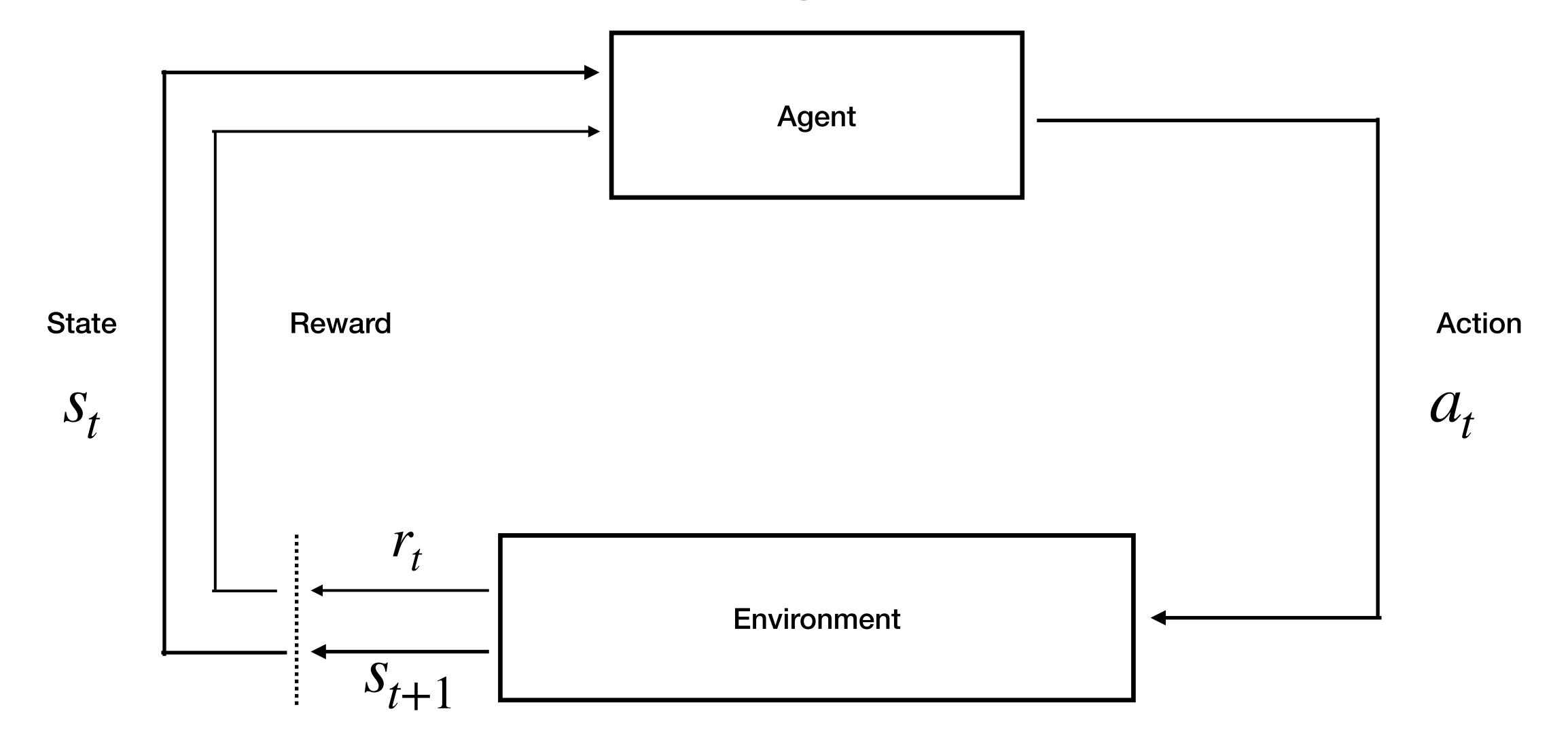


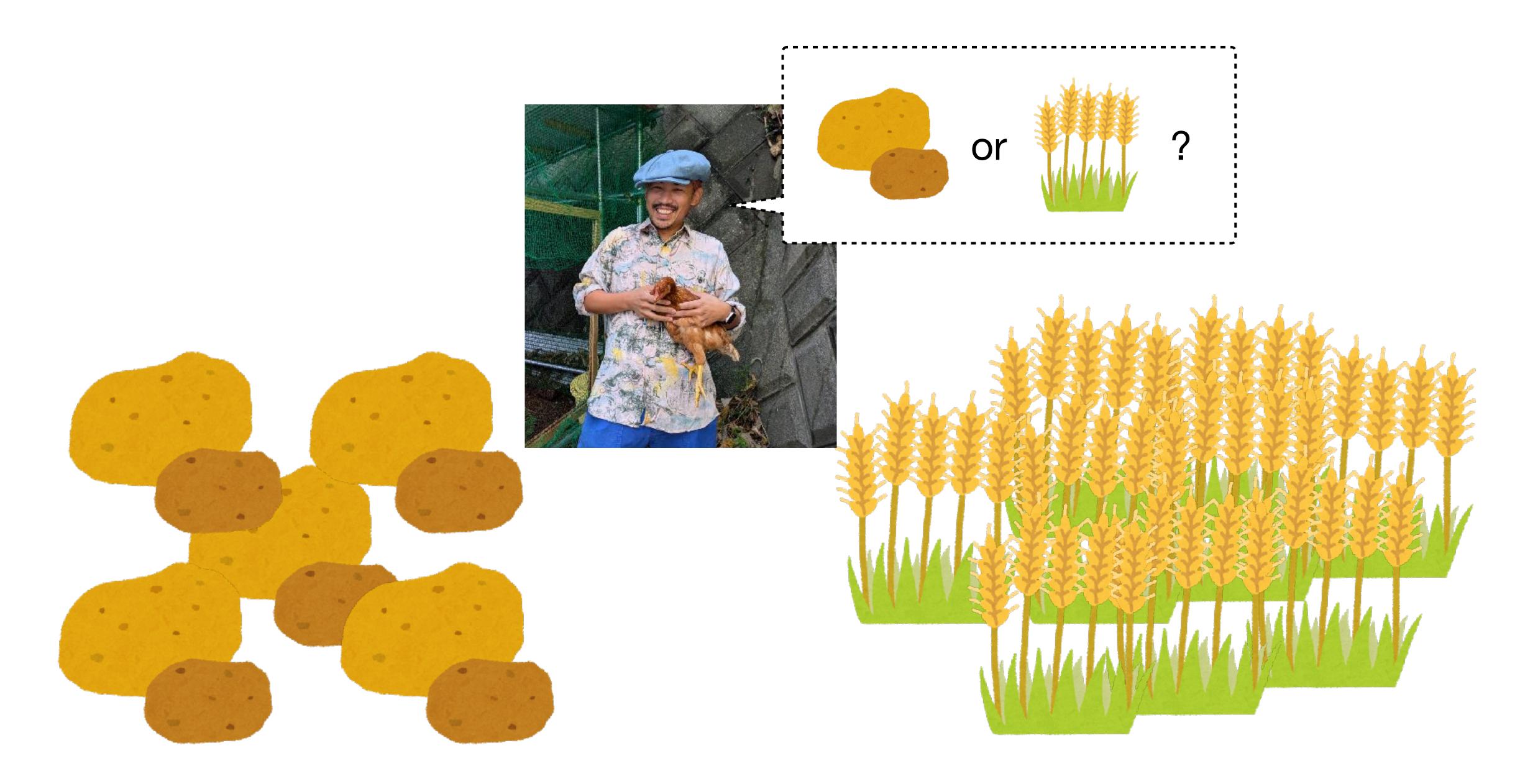
Goals of Tutorial 2:

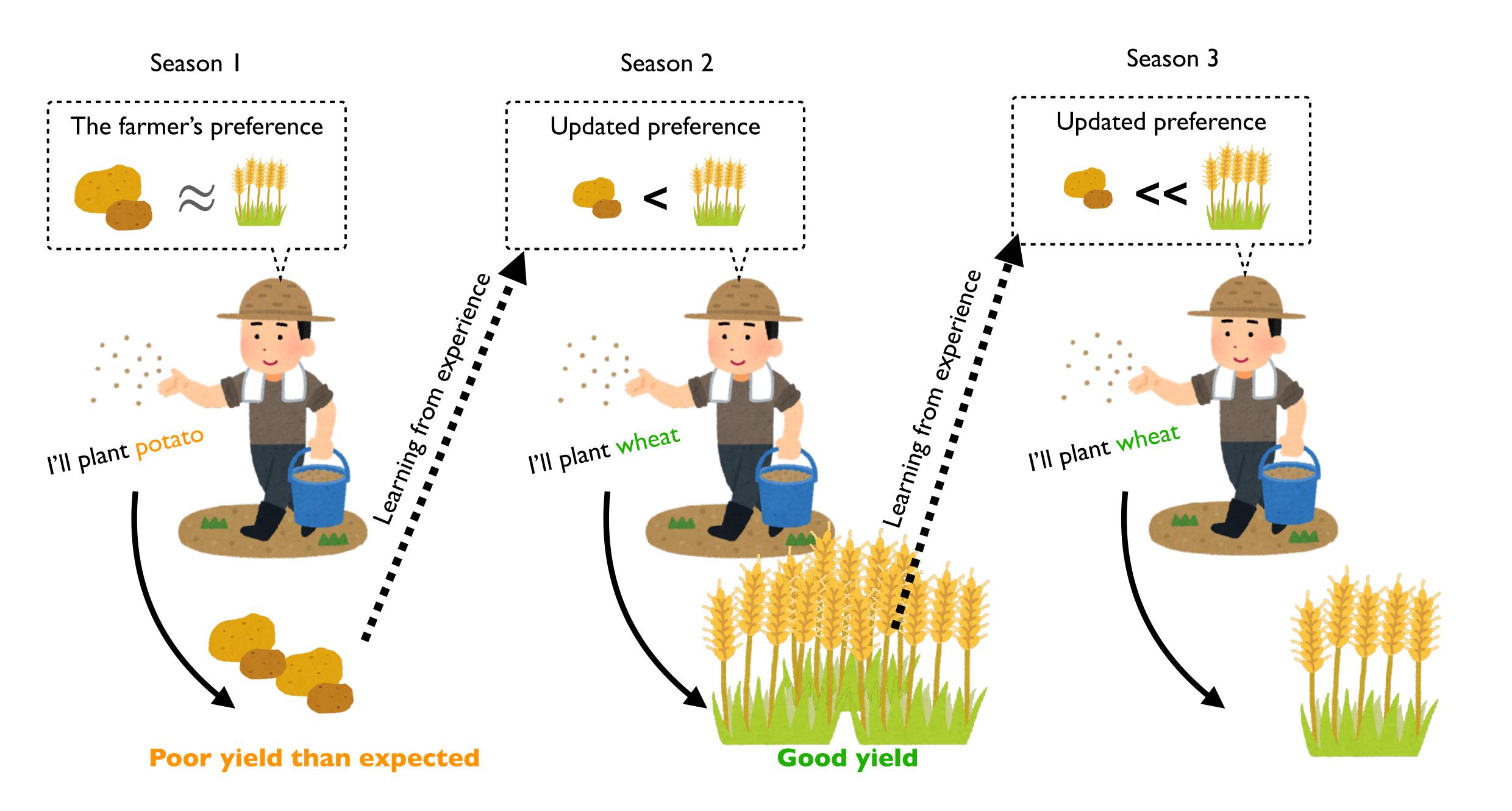
- Brisk introduction to asocial RL
 - Simulating data
 - Maximum likelihood estimation (MLE) of model parameters
 - Predicting choices
- Social learning models
 - Imitating actions
 - Combining asocial and social learning
 - Social learning hierarchy (from imitation to Theory of Mind)
- Scaling up to more complex problems

Reinforcement Learning (RL)

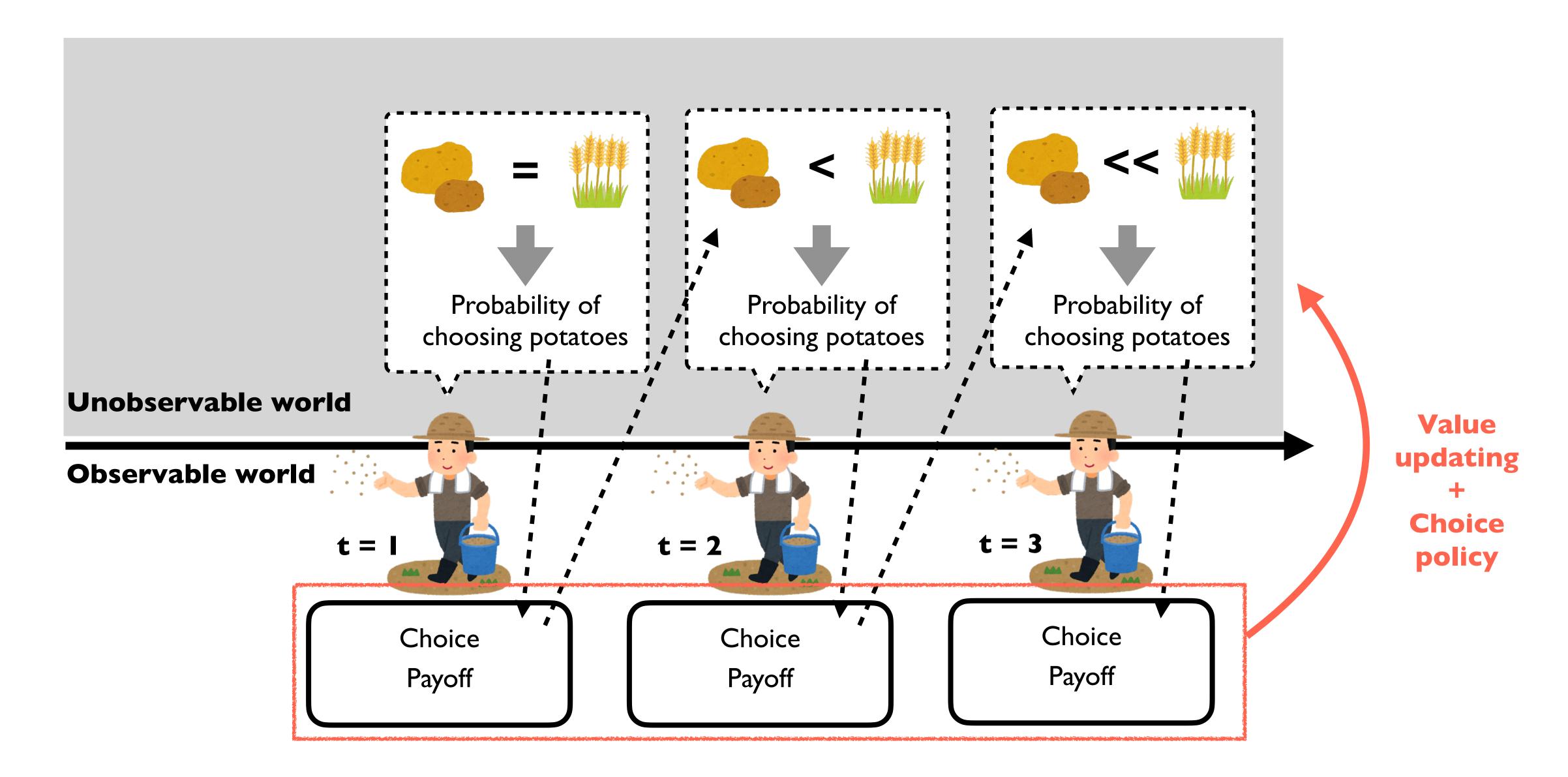


A multi-armed bandit task

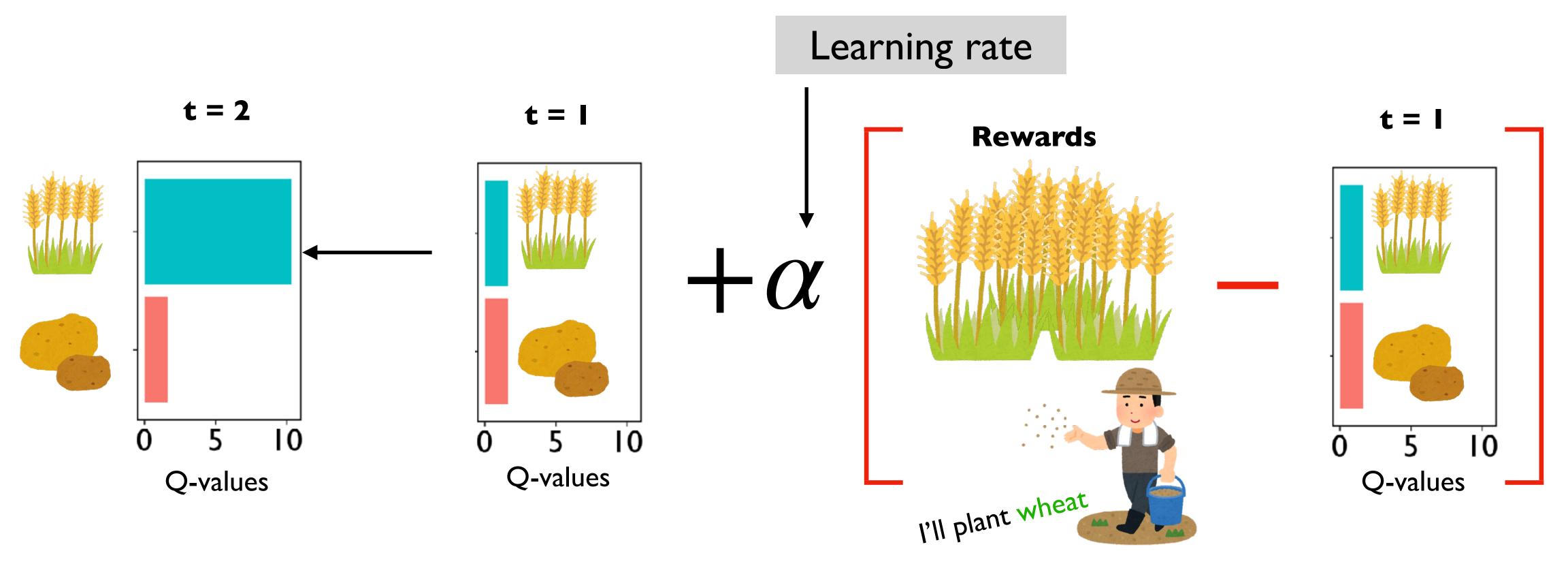




RL process is not directly observable. It must be statistically inferred.



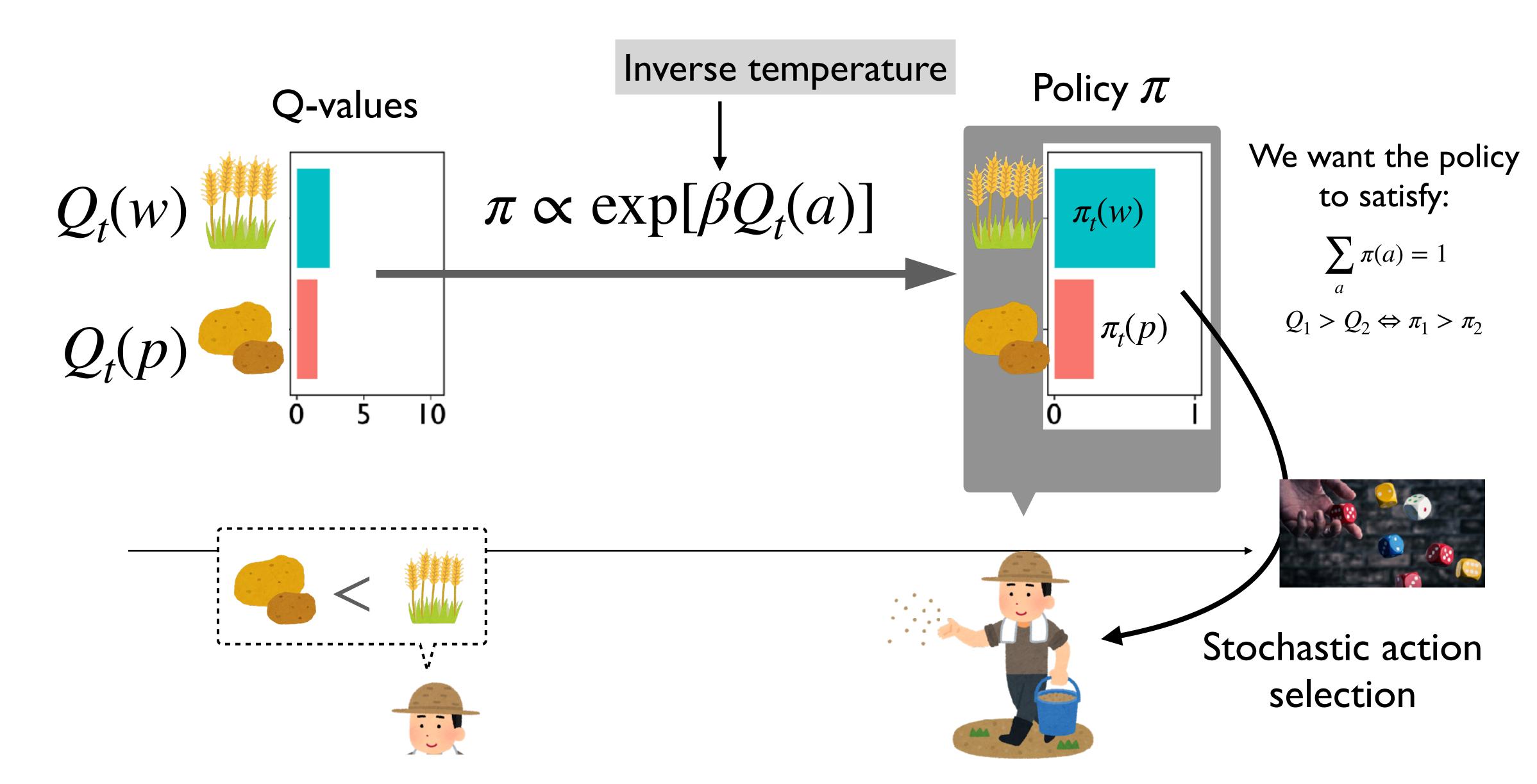
Value updating: Q-Learning

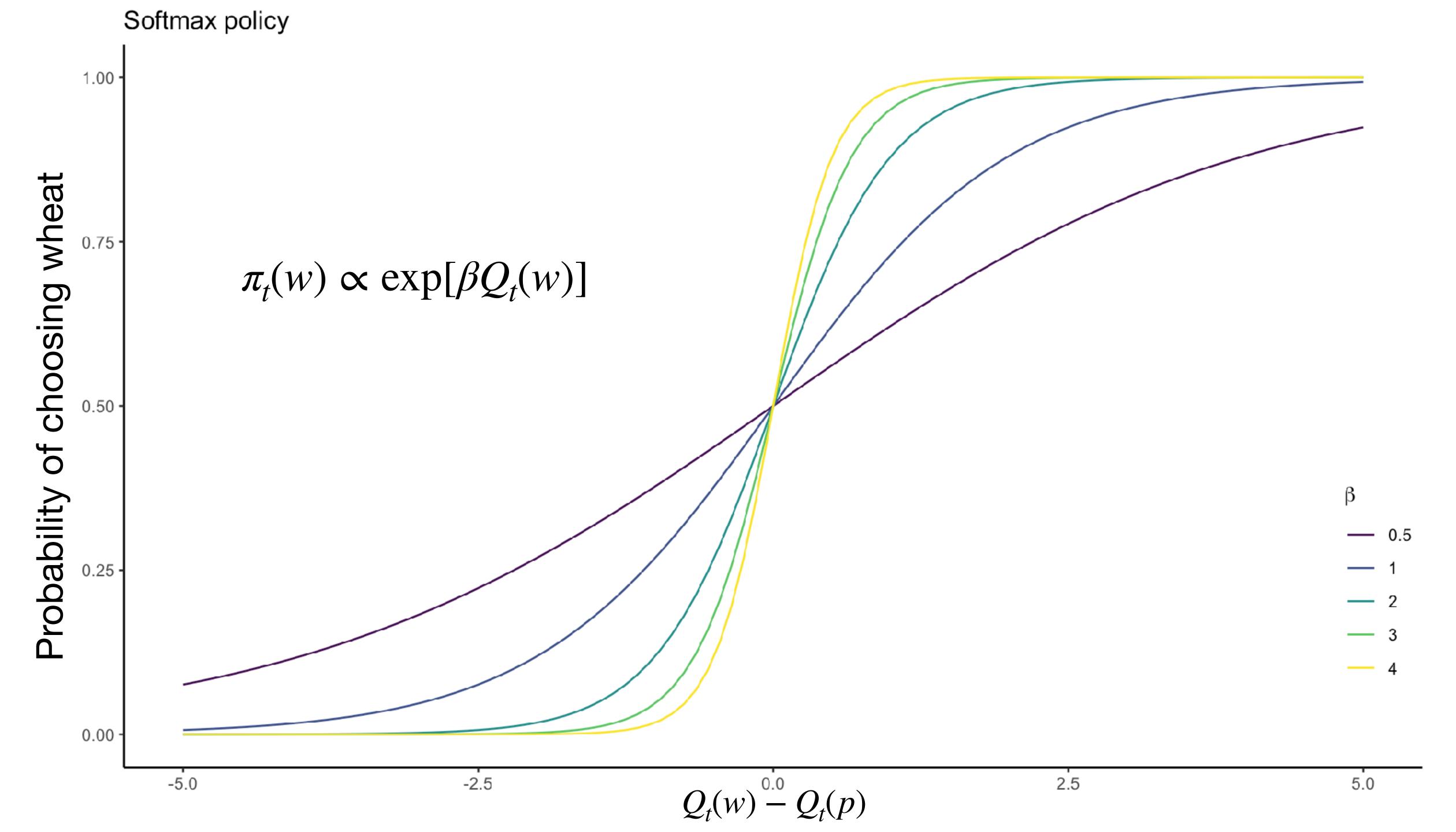


reward prediction error (RPE)

$$Q_{t+1}(a) \leftarrow Q_t(a) + \alpha \left[r_t(a) - Q_t(a) \right]$$

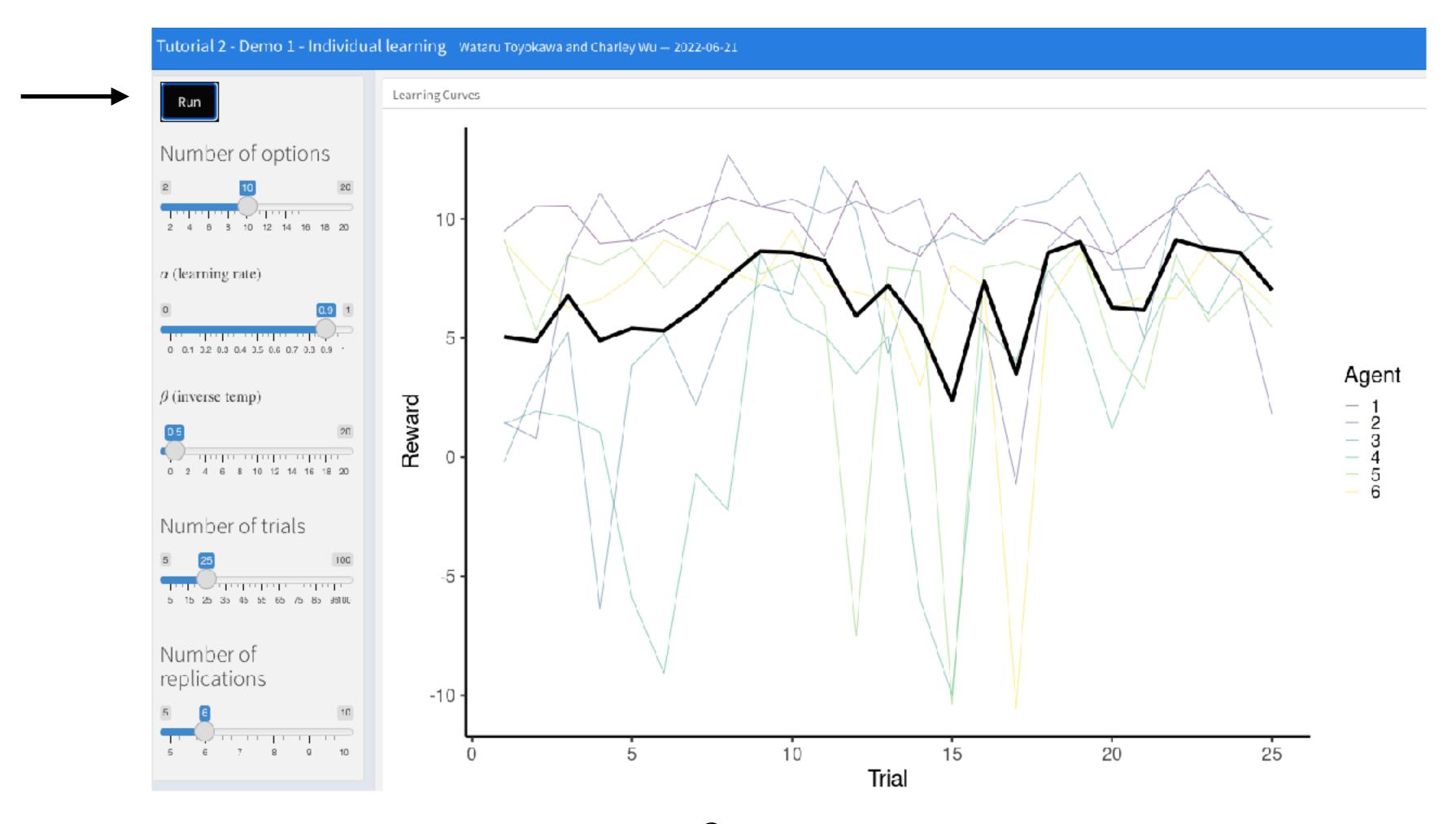
Choice policy: Softmax





https://cosmossummerschool.github.io/notebooks/tutorial-2-models-of-learning.html

Demo 1: Tweaking individual learning parameters



Which learning parameters (α, β) typically produce the best results?

Likelihood function

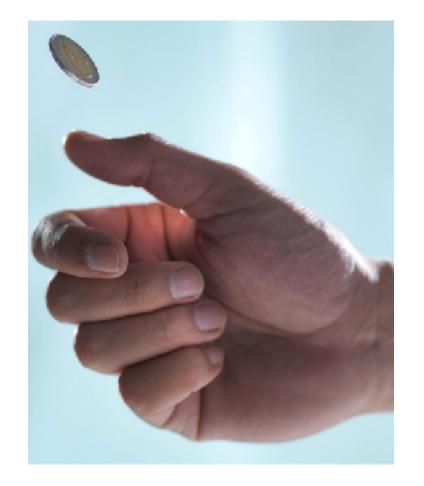
Beyond only simulating data, we also want to use models to fit experimental data.

To do so, we first need to define a Likelihood Function:

$$P(D \mid \theta)$$

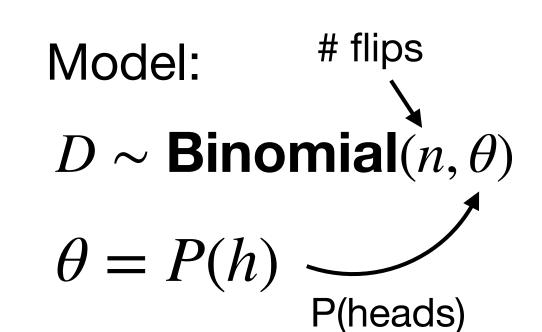
describing the probability the observed data D was generated by model parameters heta

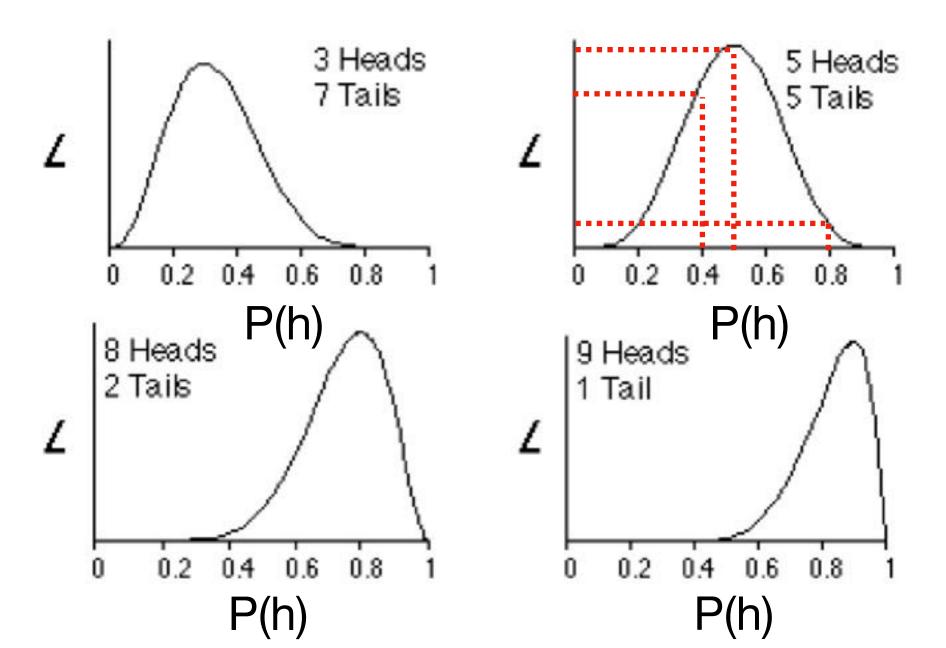
Coin Flip Model



Observed Data:

$$D = \{ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \ldots \bigcirc \}$$





Log Likelihoods

For multiple data points, we need to describe the joint likelihood over all observations:

$$P(D \mid \theta) = \prod_{t} P(d_t \mid \theta)$$

This is much easier using logarithms, since we can replace multiplication with summation in log space to compute the log likelihood

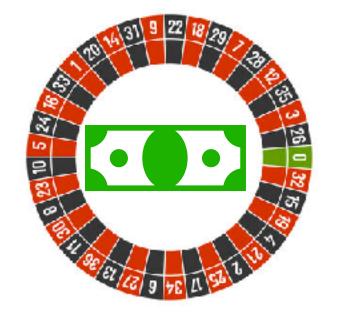
$$\log P(D \mid \theta) = \sum_{t} \log P(d_t \mid \theta)$$

Since probabilities are always <1, the log likelihood will always be negative. Thus, it's more convenient to express model fit using the negative log likelihood (nLL) by inverting the sign:

$$nLL = -\log P(D \mid \theta)$$

The nLL expresses the amount of error or loss (aka 'log loss') and will always be greater than zero. Smaller values thus describe better model fits.

Likelihoods as Goodness of Fit



Measure	Formula	Heads	Tails	
Likelihood	P(D θ)	80%	20%	
Log likelihood	log P(D θ)	-0.22	-1.61	

aka Log Loss

Used in BIC/AIC

Negative Log Likelihood (nLL)	– log P(D θ)	0.22	1.61	
Deviance	-2 log P(D θ)	0.44	3.22	

From model simulation to likelihood functions

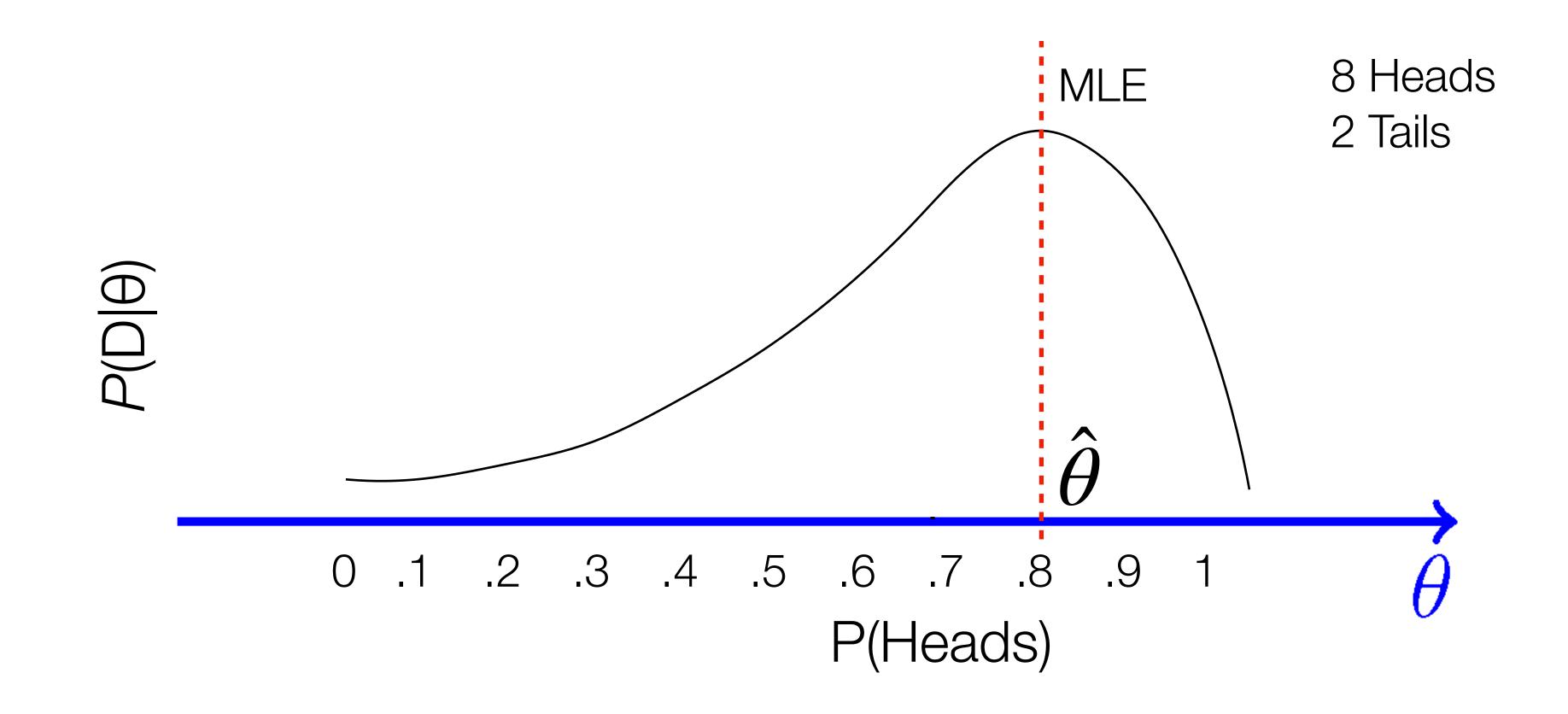
In practice, we can use code very similar to our model simulations to create a likelihood function


```
likelihood <- function(params, data){
   nLL <- 0 #initialize negative log likelihood
   for (d in data){ #loop through data
        #make predictions
        predictions <- model(params)
        #define true outcome
        observedAction <- d
        #Update nLL
        nLL <- nLL -log(predictions[observedAction])
   }
   return(nLL)
}</pre>
```



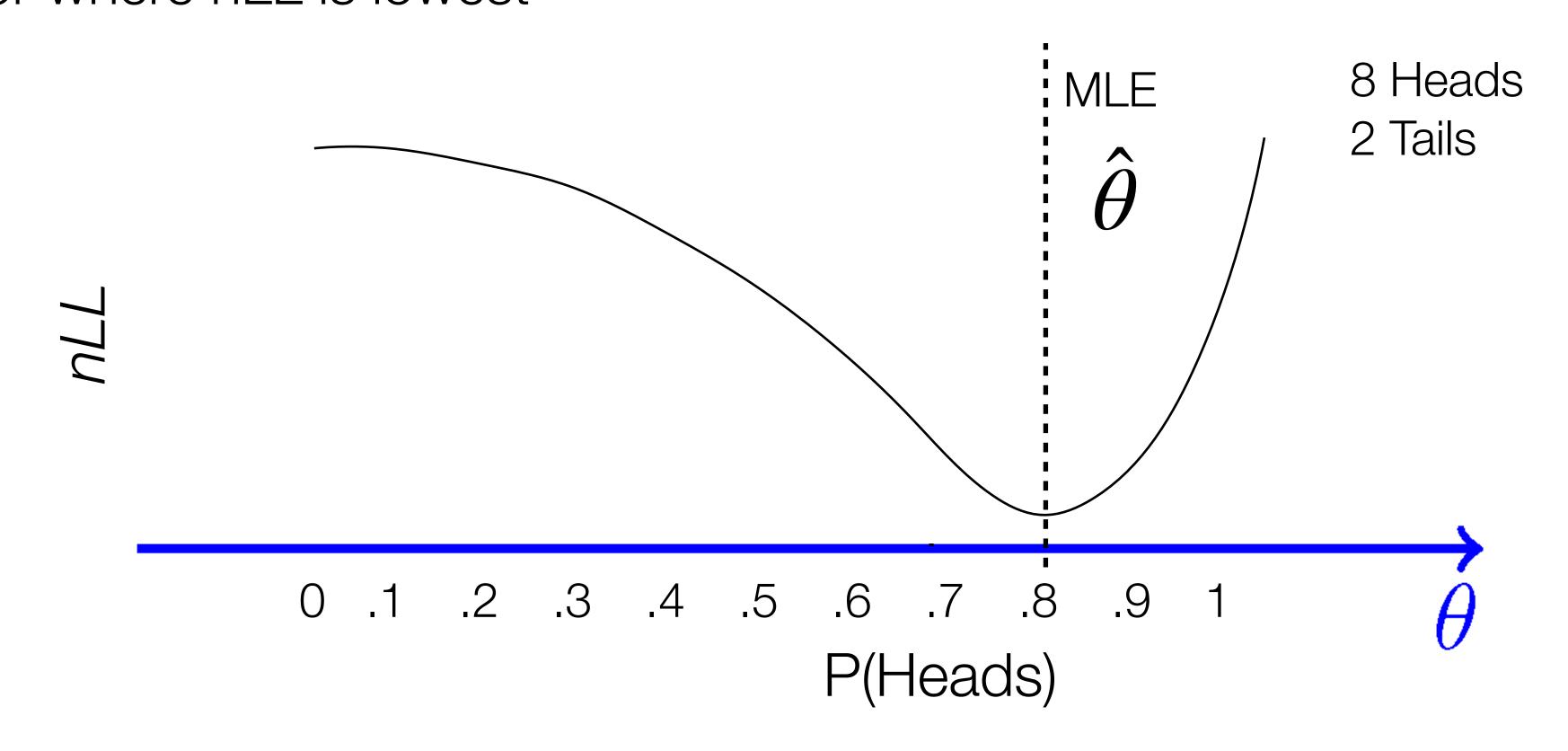
Fitting Models with Maximum Likelihood Estimation (MLE)

Use the likelihood function to find the parameters $\hat{\theta}$ where $P(D \,|\, \theta)$ is largest

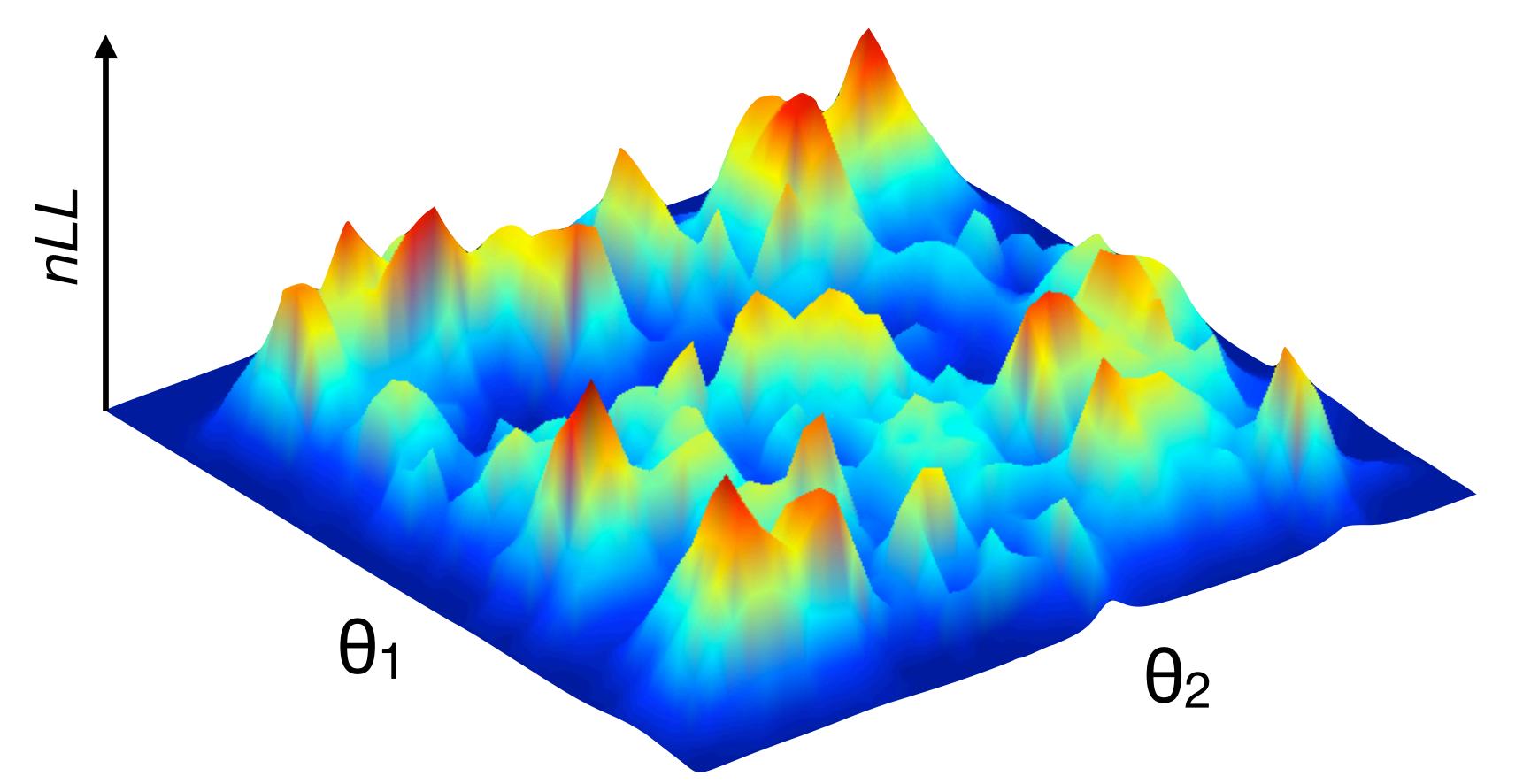


Fitting Models with Maximum Likelihood Estimation (MLE)

Use the likelihood function to find the parameters $\hat{\theta}$ where $P(D \mid \theta)$ is largest or where nLL is lowest



Computing the MLE



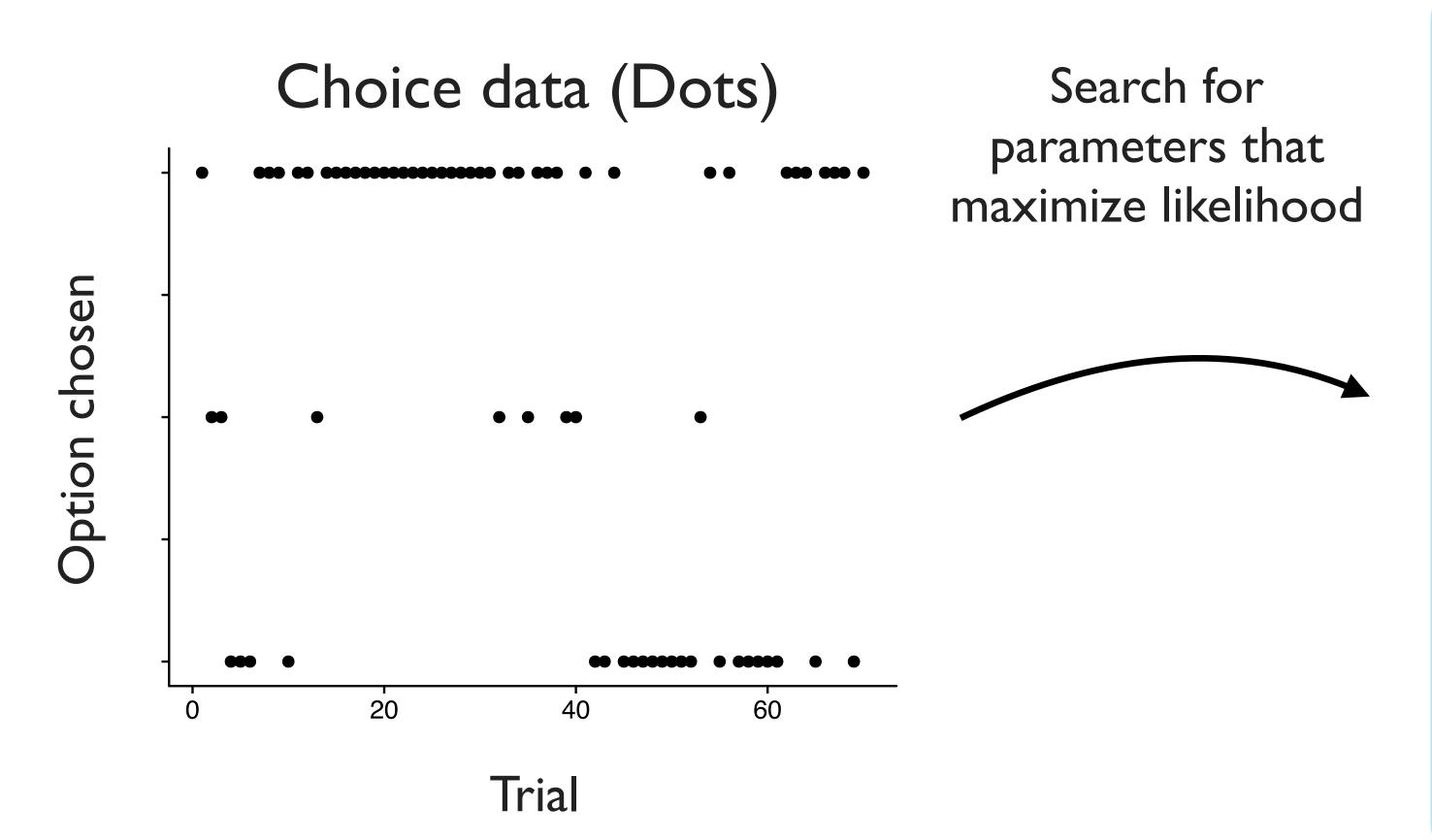
Optimization function

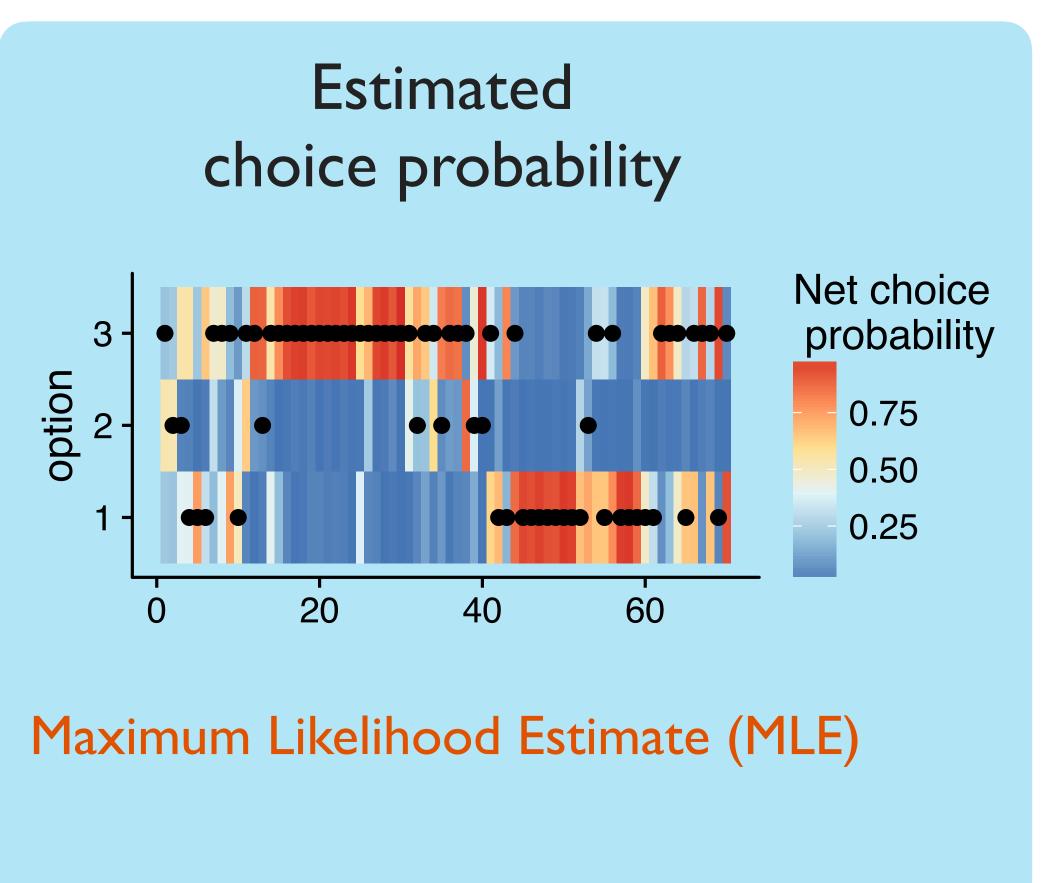
```
likelihood <-
function(params
, data)</pre>
Minimize nLL
```

Types of optimization algorithms

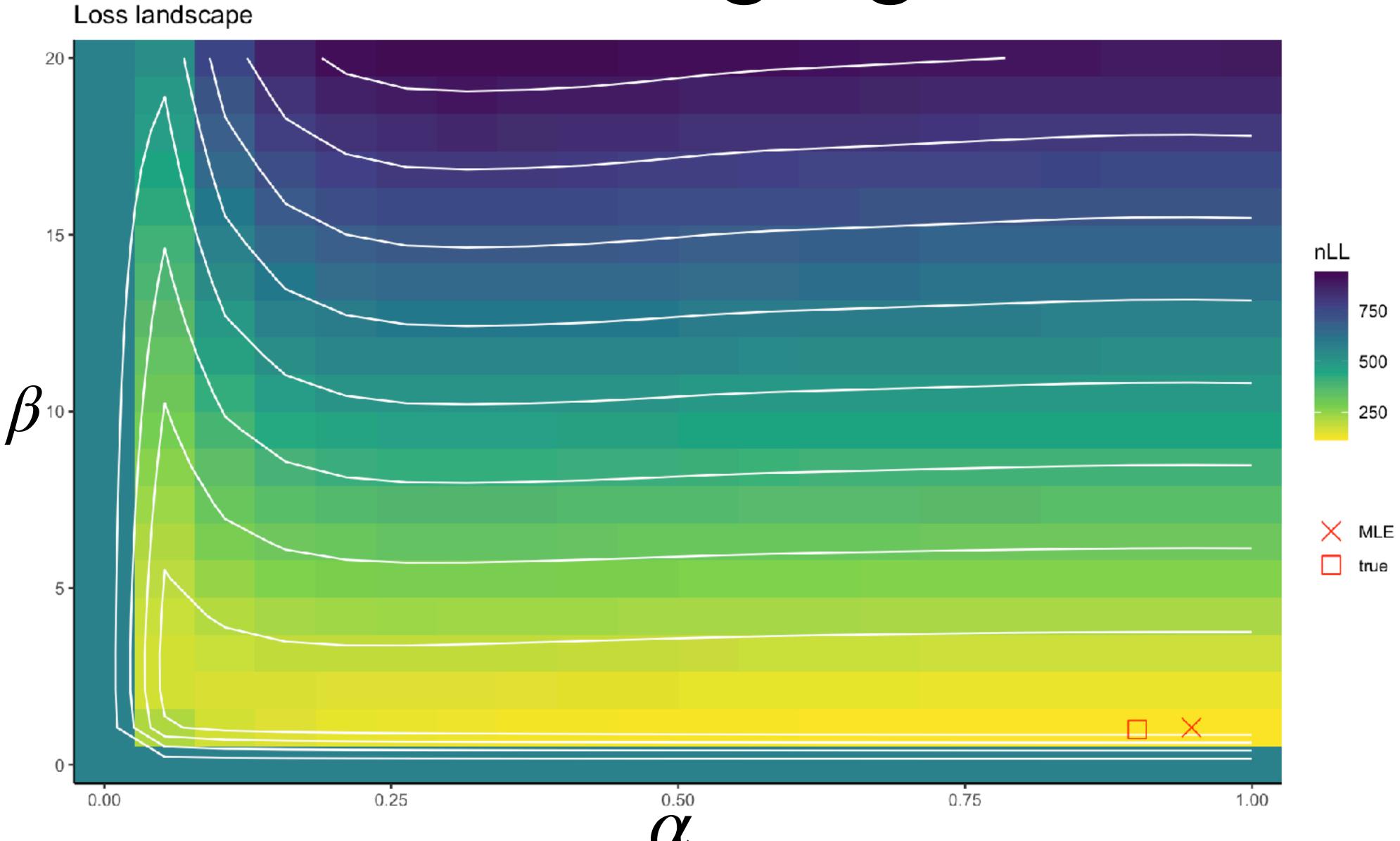
- Gradient descent
- Simplex methods
- Differential evolution

MLE for a RL model

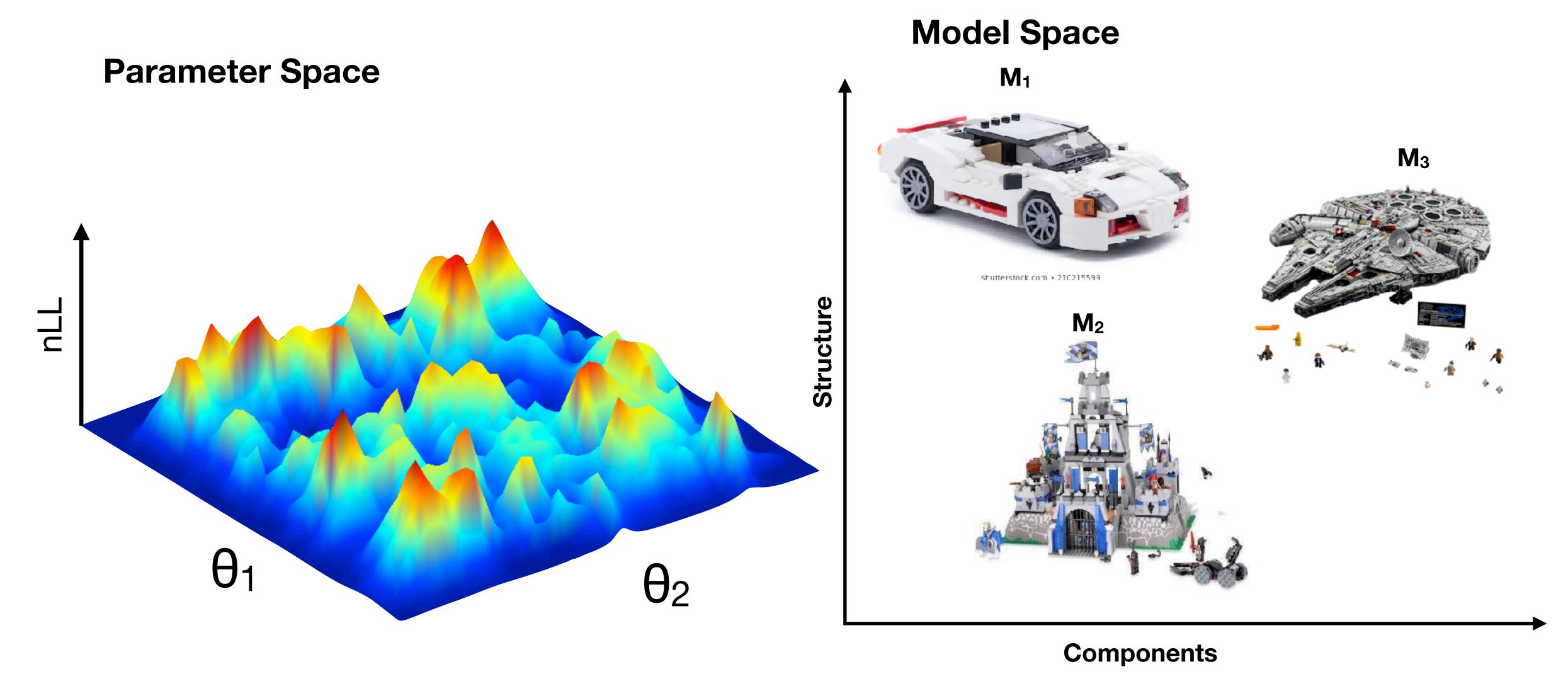




Q-learning agent

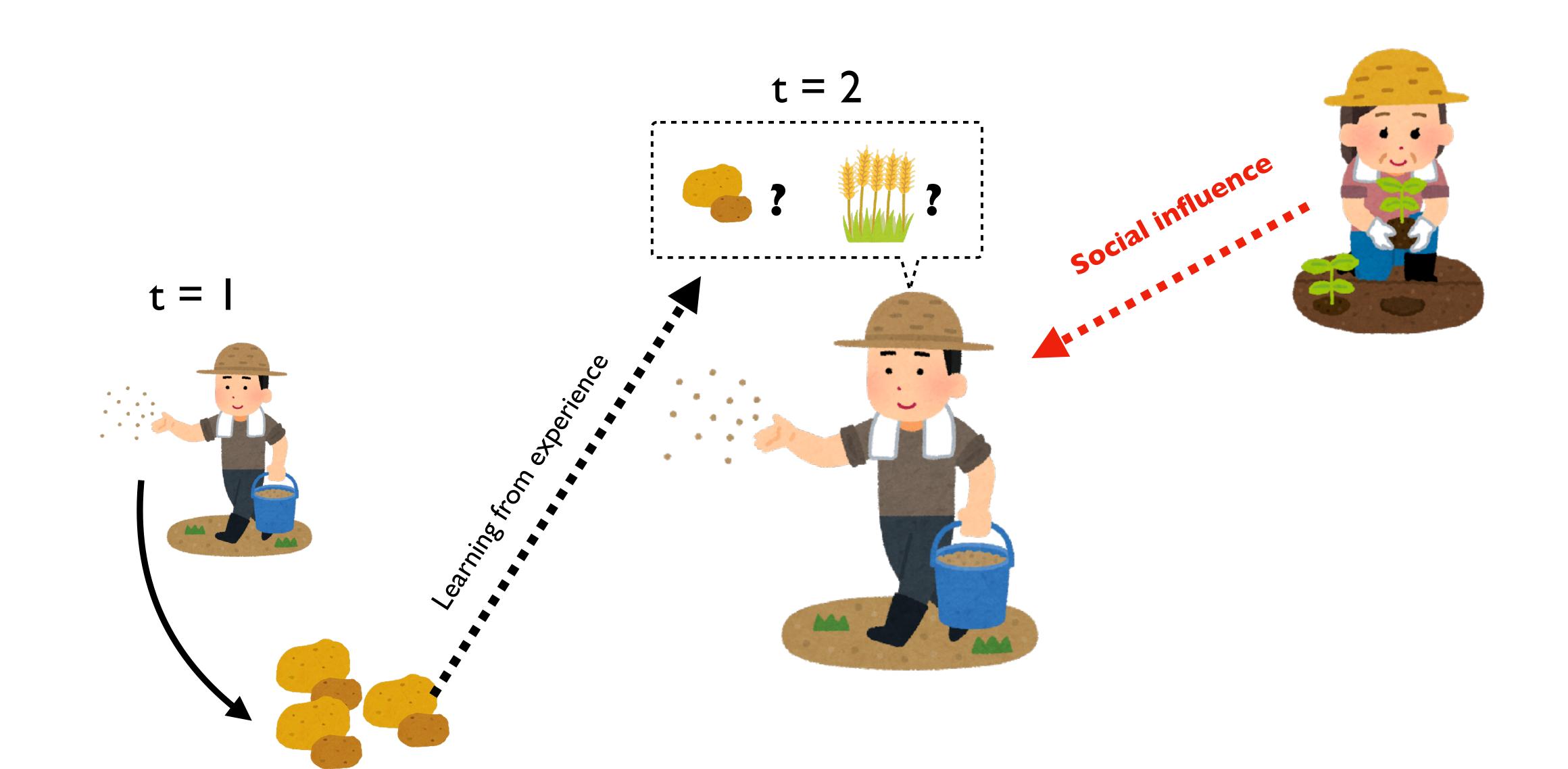


Parameter Space and Model Space



Learning from social information

Learning from social information

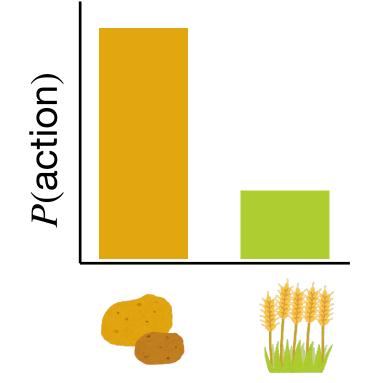


Imitating actions

Frequency-dependent copying (FDC)

Probability of choosing option *a*

 $\pi_{\mathsf{FDC}}(a)$

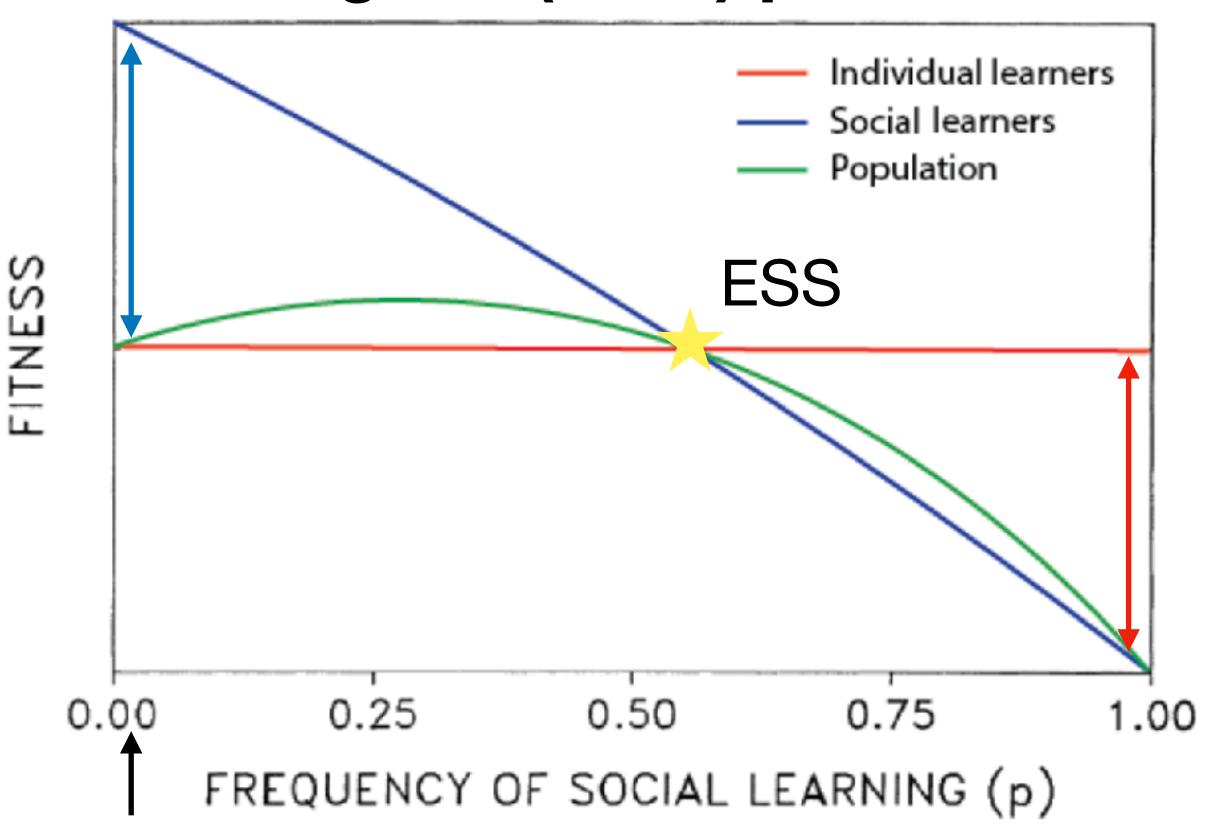


frequency of other agents performing the same action

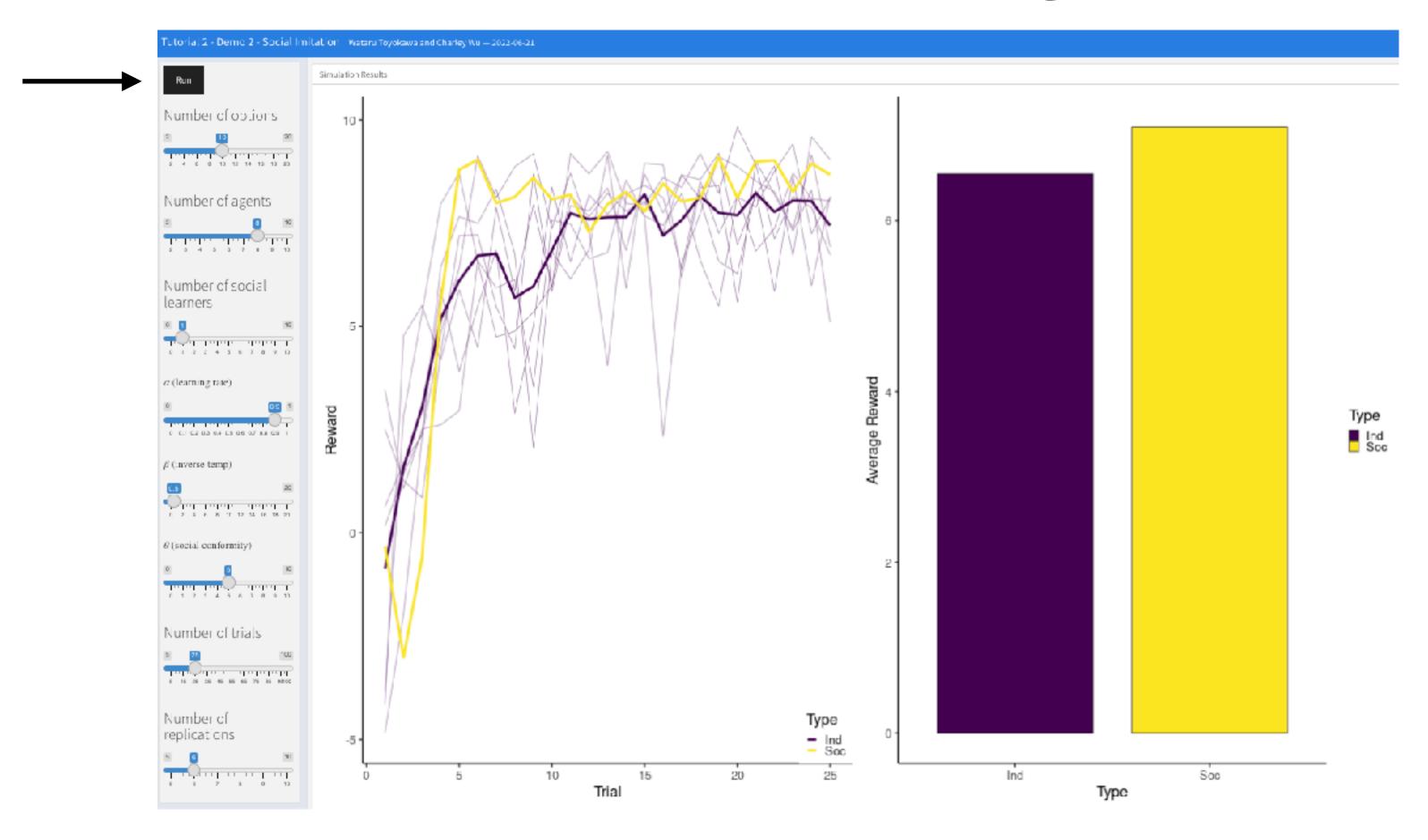
The wisdom and madness of crowds

- Social learning via imitation has frequencydependent fitness
 - High social learning fitness when p is small
 - Collapse in social learning fitness when *p* is large
- The best strategy depends on what other people do, creating a dynamic strategy selection problem
- Evolutionarily stable strategy (ESS) is an intermediate mixture

Rogers' (1988) paradox



Demo 2: Imitation and Rogers' paradox



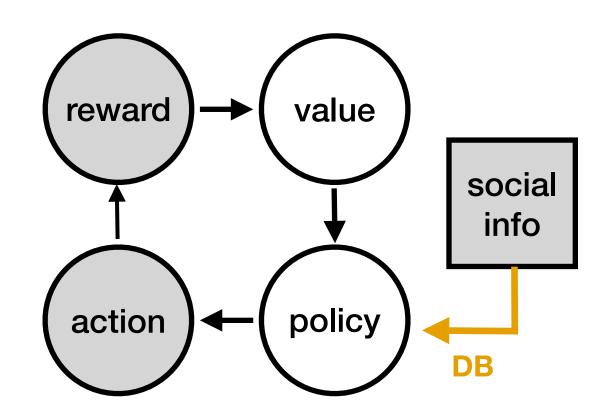
How do different ratios of individual vs. social learners change the performance of each agent type?

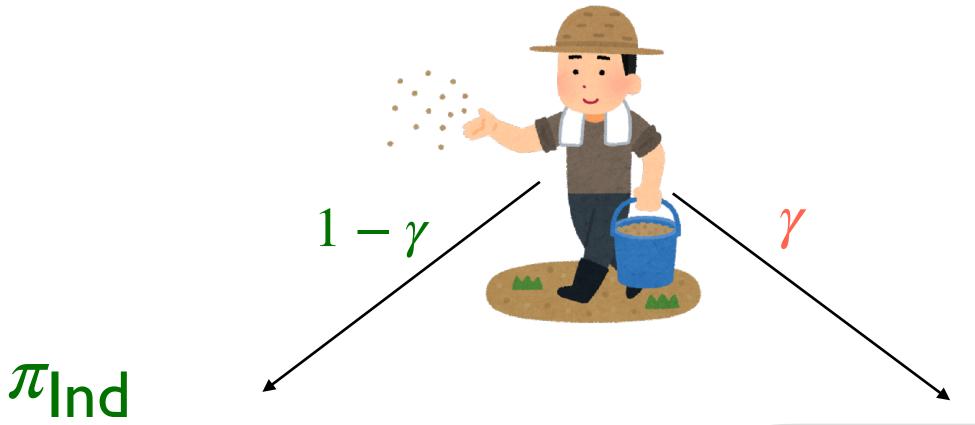
Combining imitation and value-learning

Decision-biasing (DB)

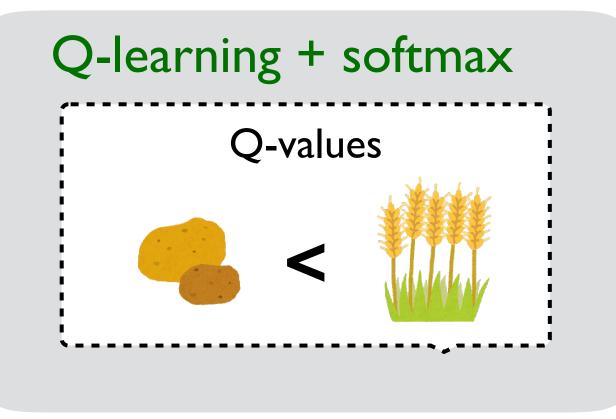
Mixture policy individual social

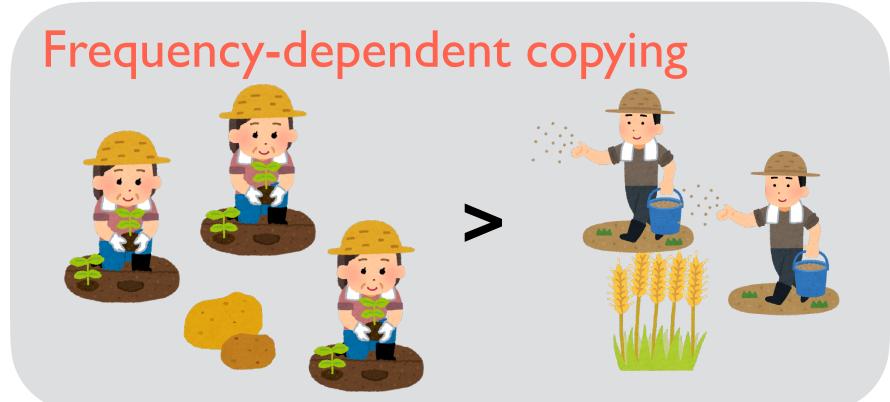
$$\pi_{DB} = (1 - \gamma)\pi_{\text{Ind}} + \gamma\pi_{\text{Soc}}$$





 π Soc

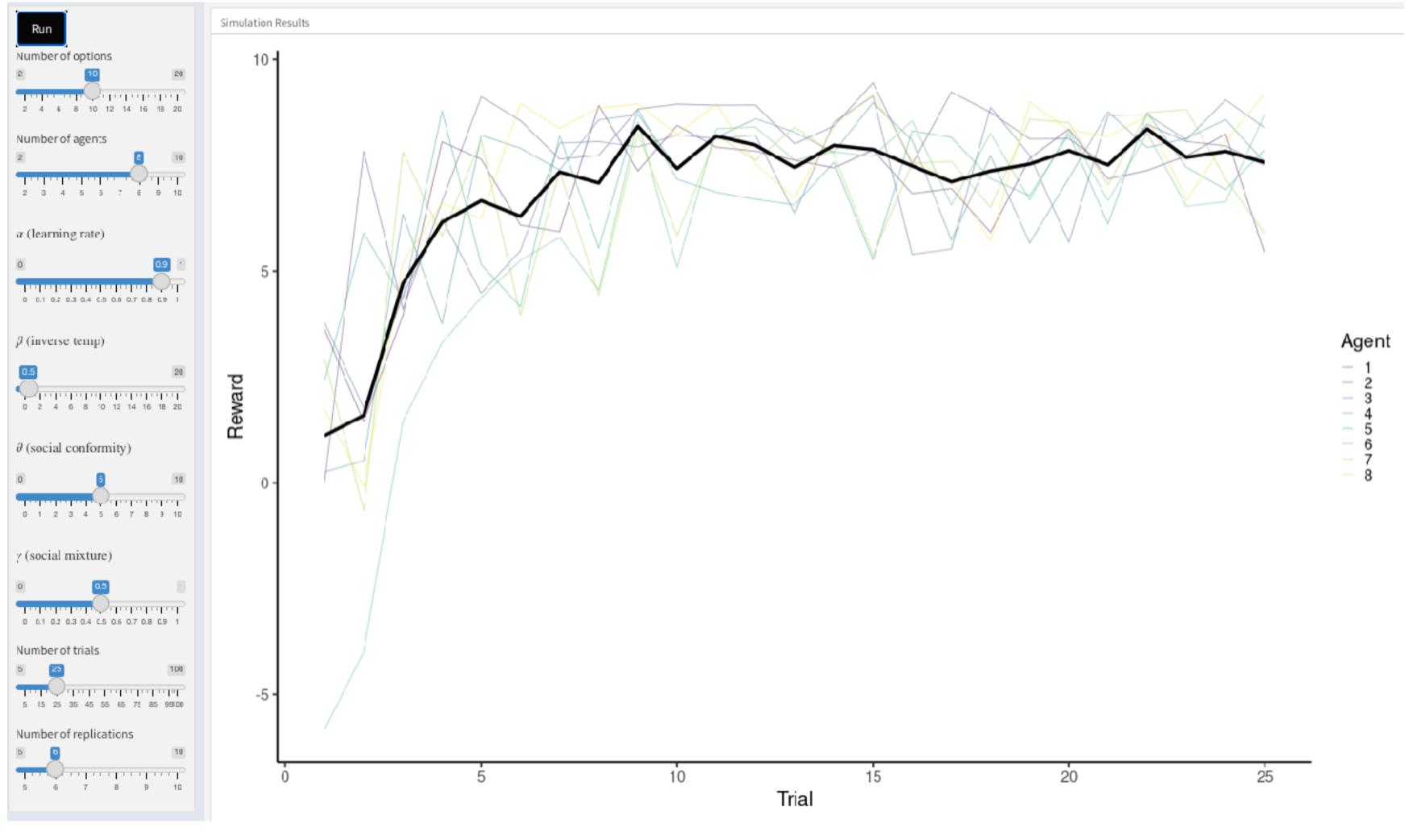




 $\frac{f(i)^{\theta}}{\sum_{k} f(k)^{\theta}}$

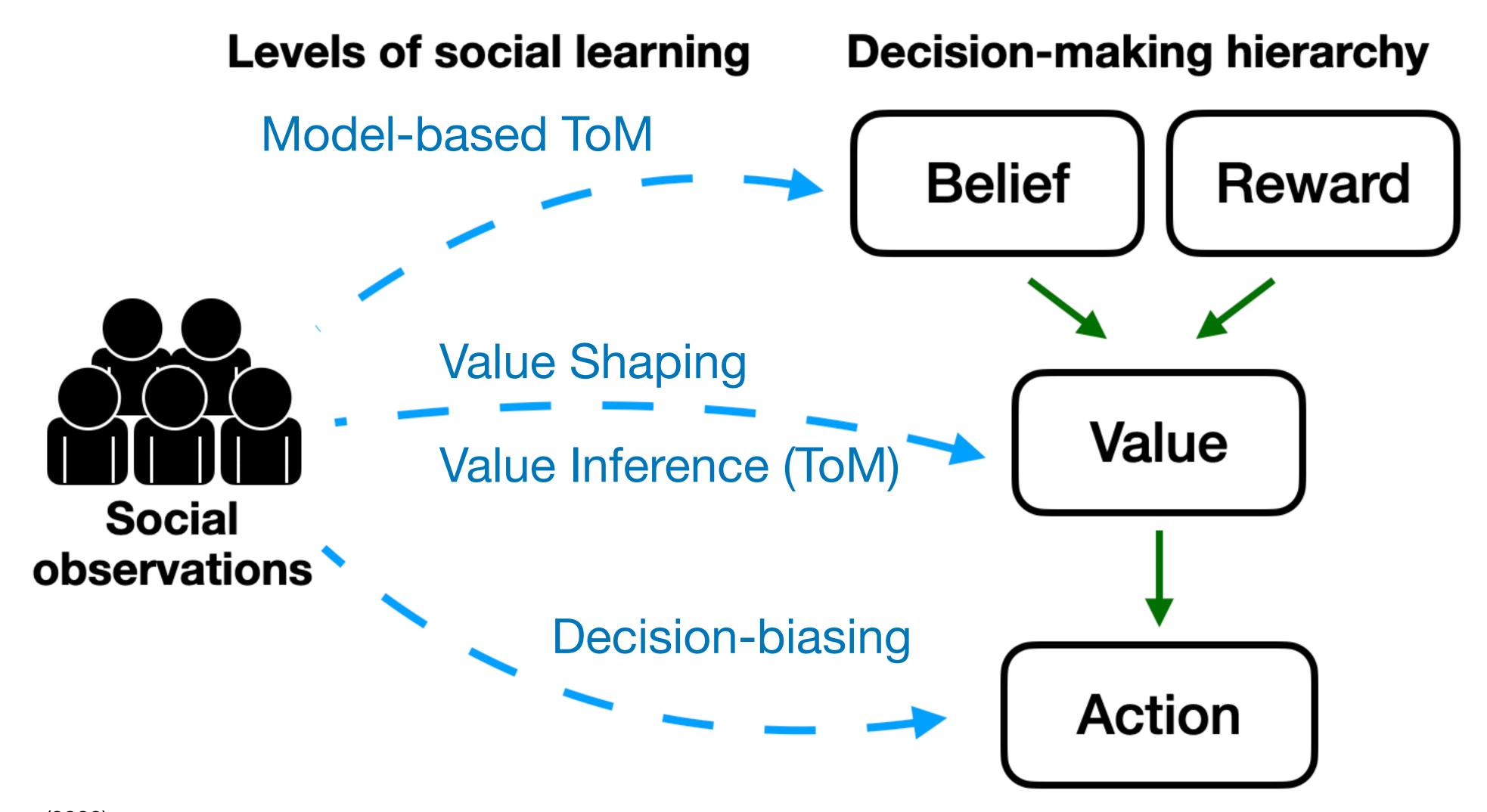
Notebook https://cosmossummerschool.github.io/notebooks/tutorial-2-models-of-learning.html

Demo 3: Decision-biasing



Which values of γ (social mixture) and θ (conformity exponent) typically produce the best results?

Social influence at different levels of learning

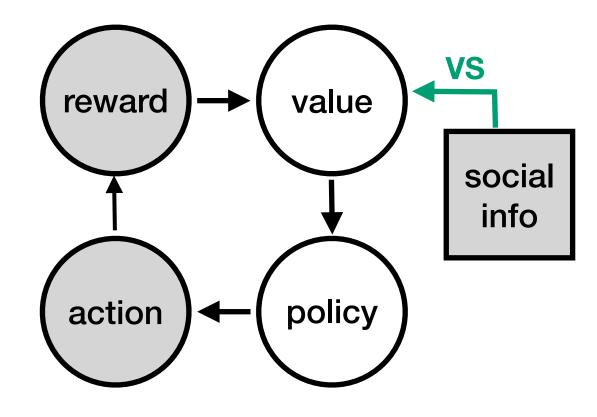


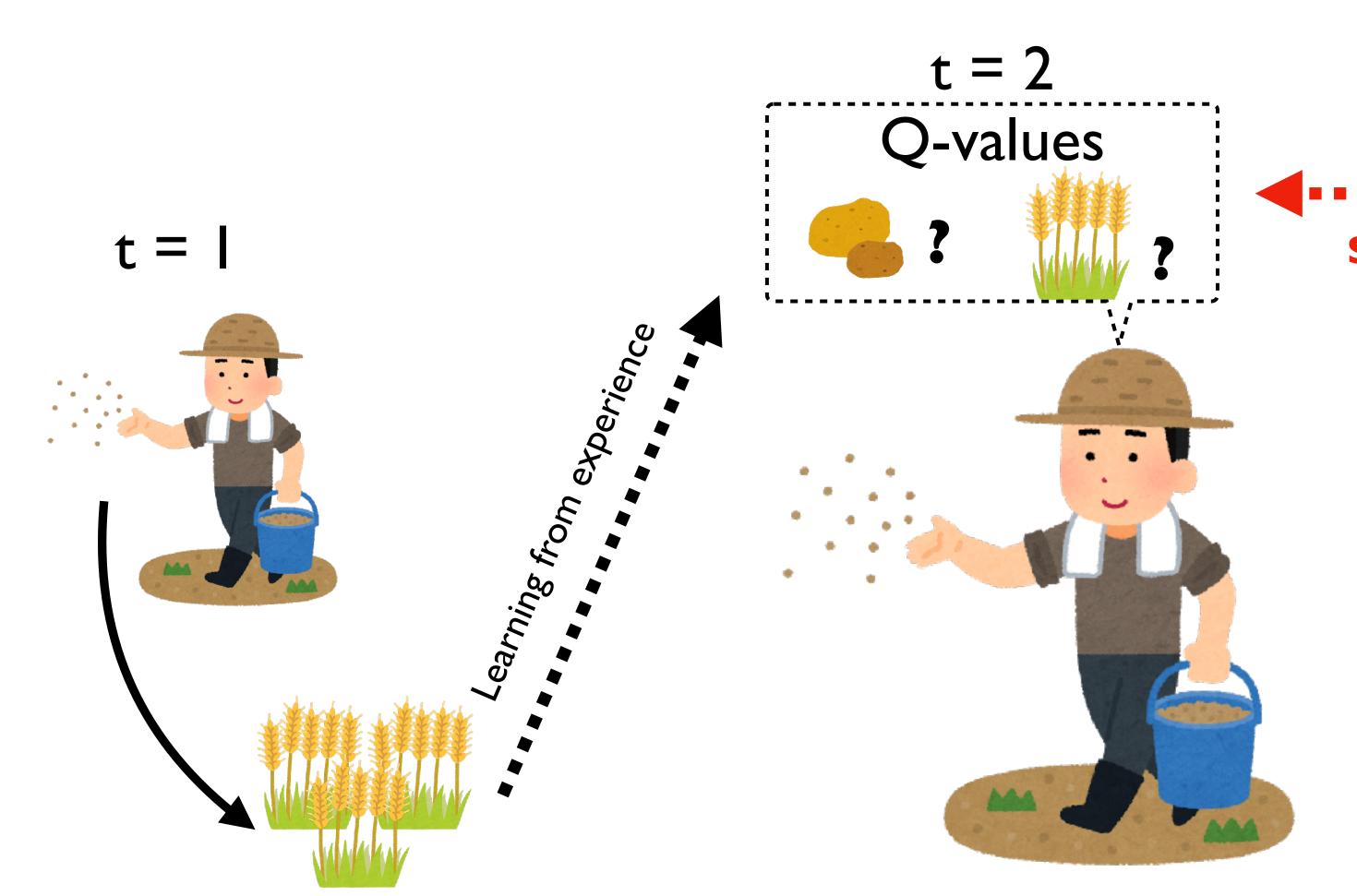
Wu, Vélez, & Cushman (2022)

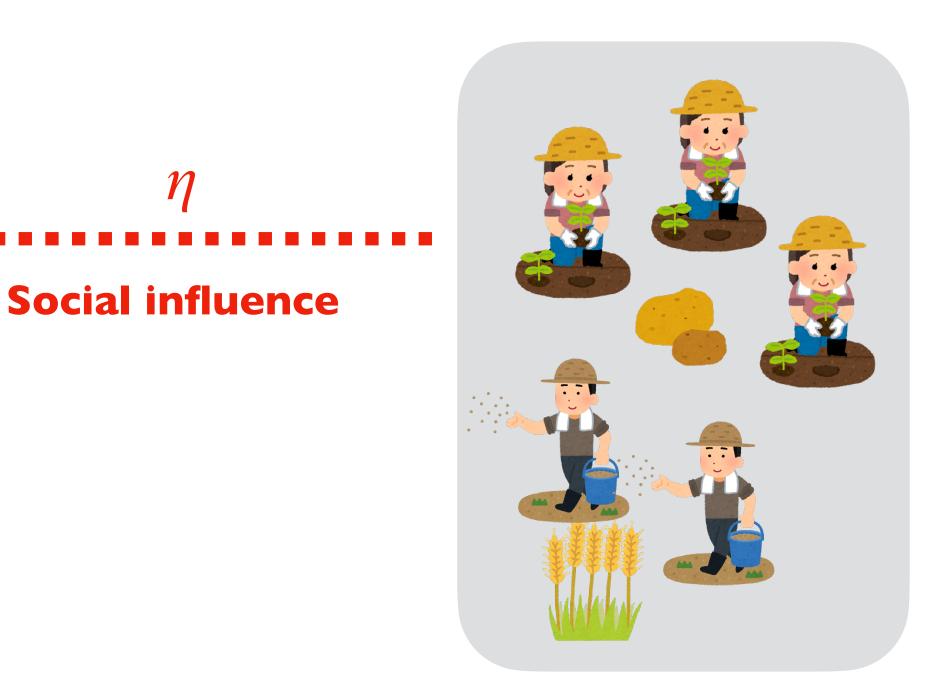
Value-shaping (VS)

value bonus

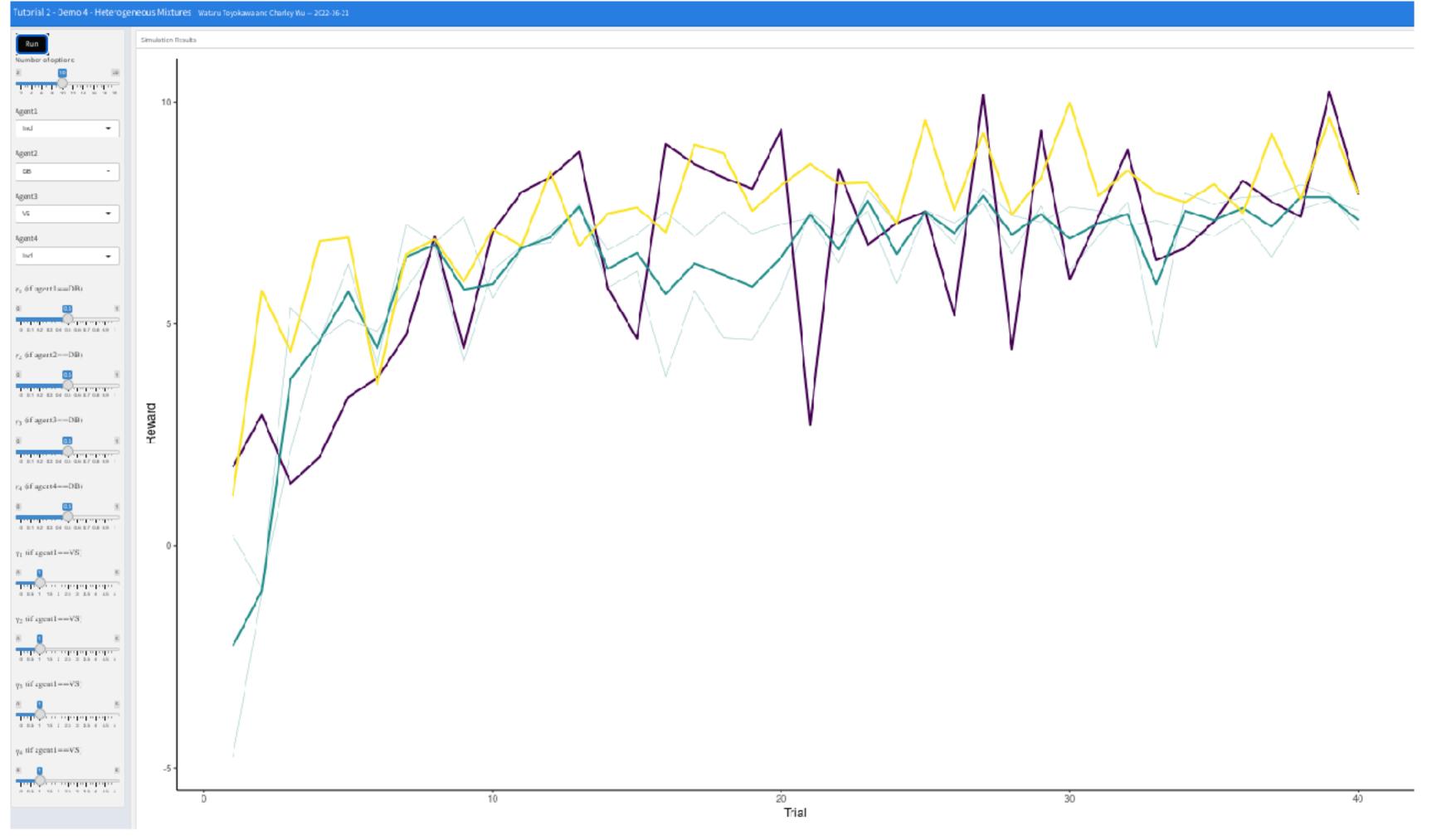
$$Q(a) \leftarrow Q(a) + \eta f(a)$$





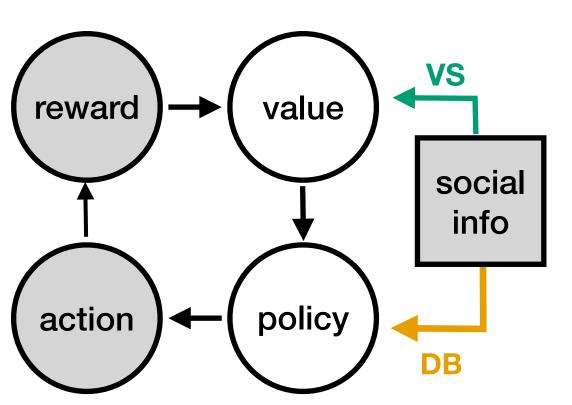


Demo 4: Heterogeneous groups

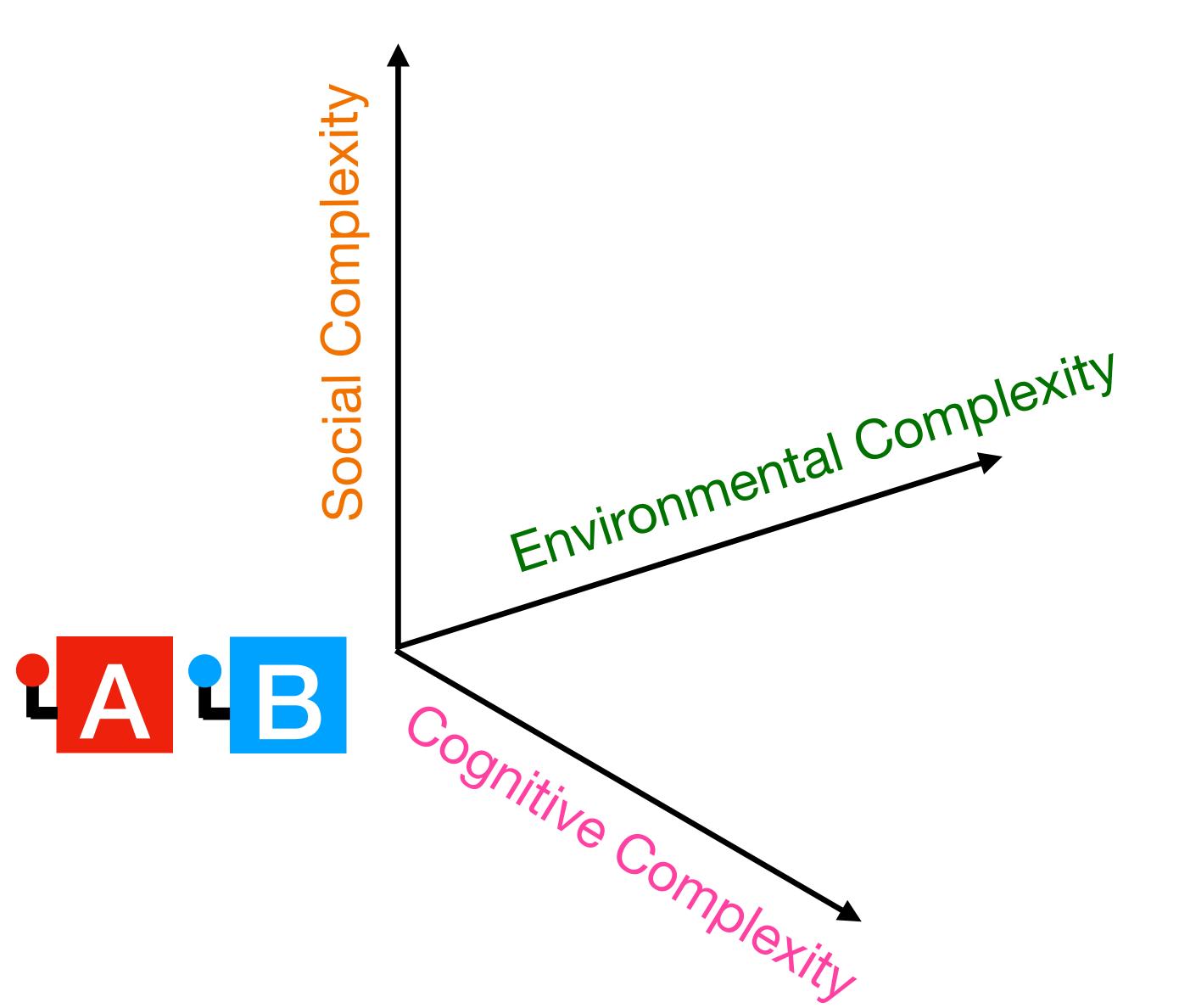


Which strategy performs better than others? Is it robust to different group compositions?

Ind vs DB vs VS



Scaling up to more diverse social learning tasks



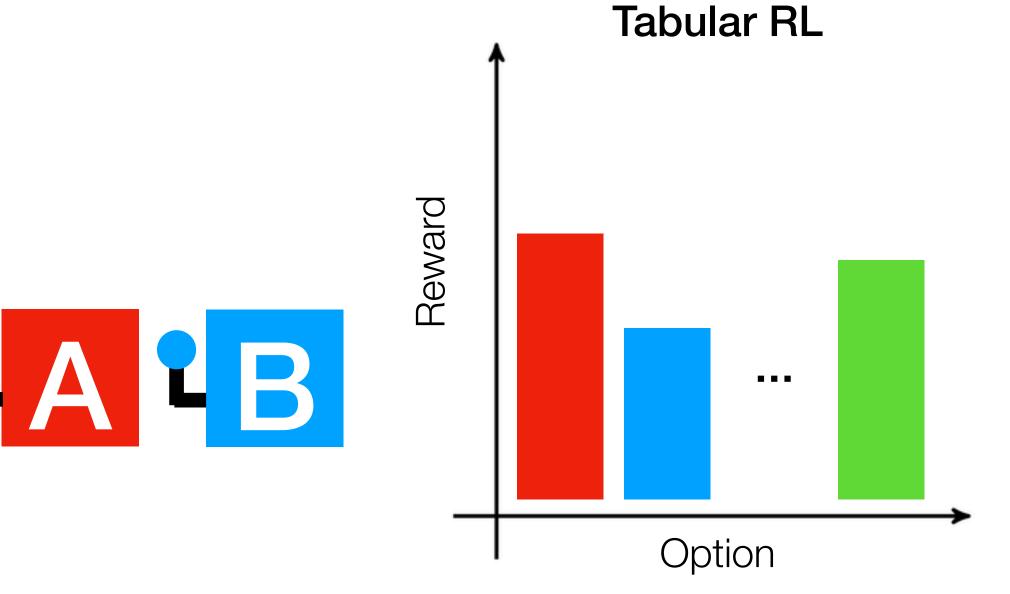
- Environmental complexity
 - Reward structure
 - Temporal dynamics
- Social complexity
 - Network structures
 - Incentives
- Cognitive complexity
 - imitation vs. emulation (ToM)
 - Pedagogy vs. observational learning

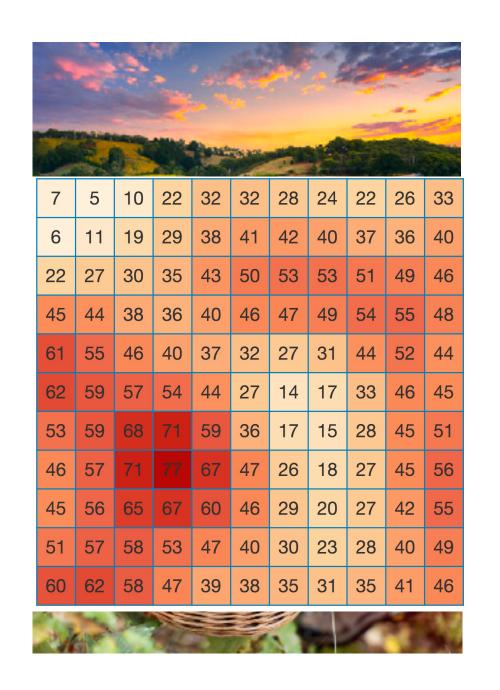
Environmental Complexity: Structured rewards

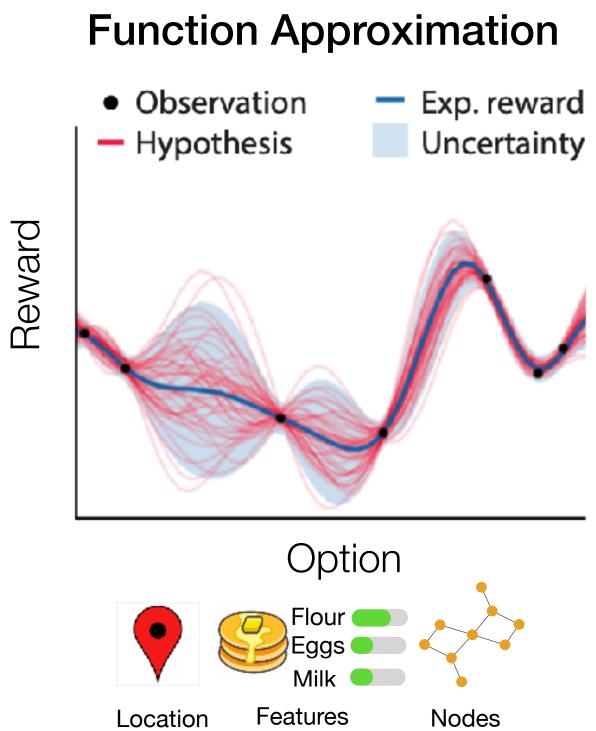
- Rather than assuming each action has independent rewards (**Tabular RL**), we can leverage the structure of the environment to *generalize* from familiar to new situations (**Function Approximation**)
- Gaussian Process (GP) regression is a versatile framework for generalization using Bayesian function approximation

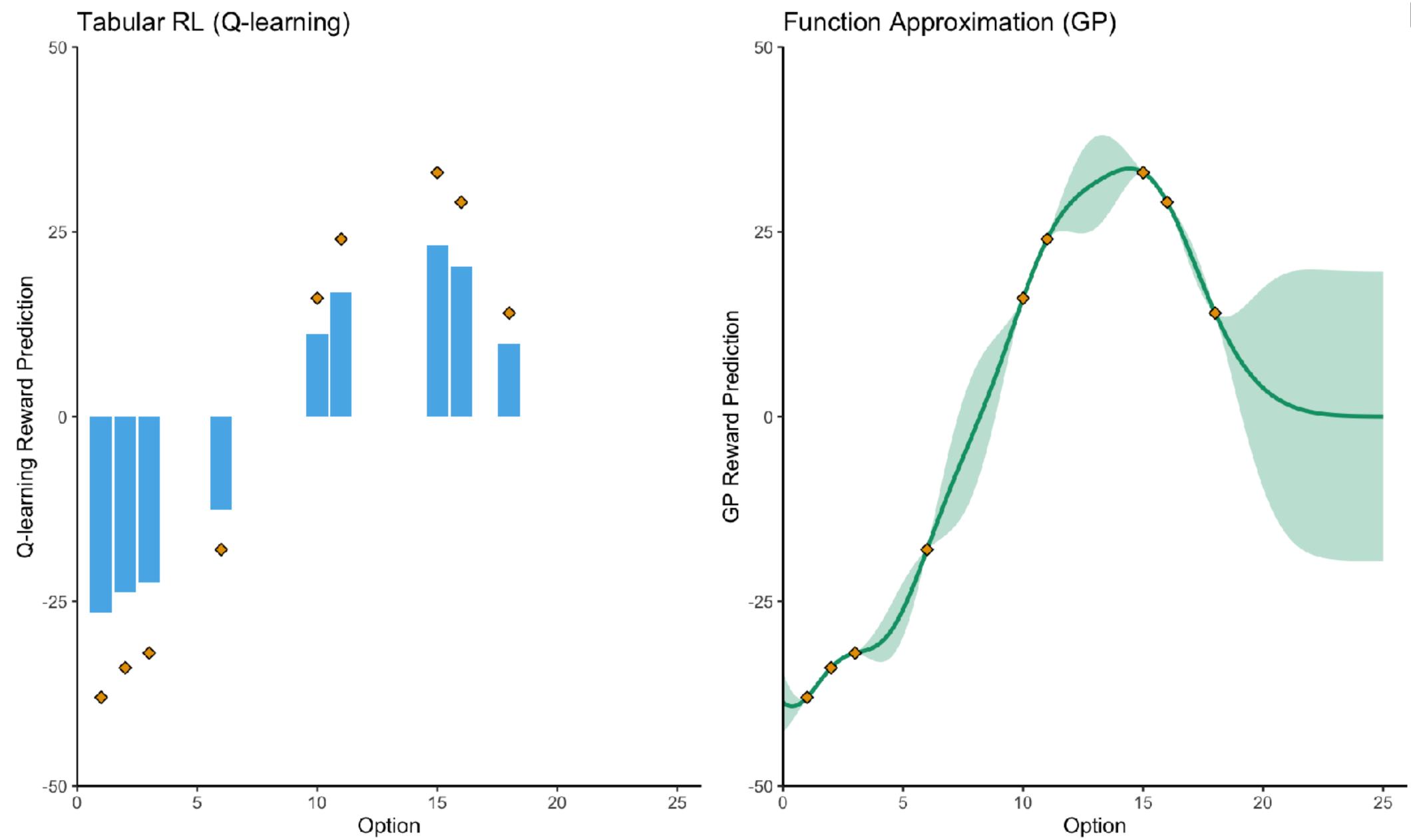
• Stimuli in similar locations, with similar features, or with similar network connections are expected to

yield similar rewards









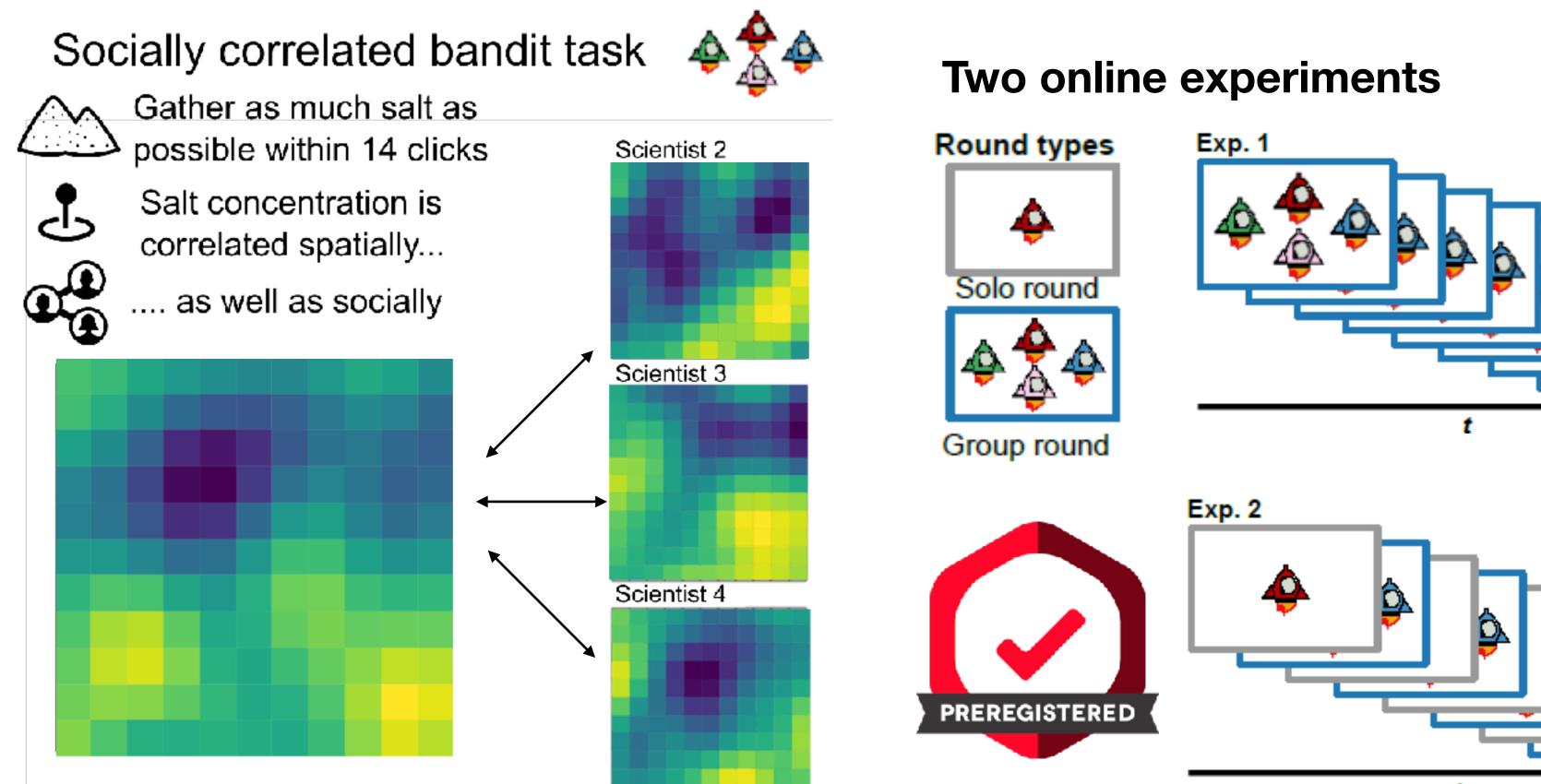
Environmental Complexity: Structured rewards

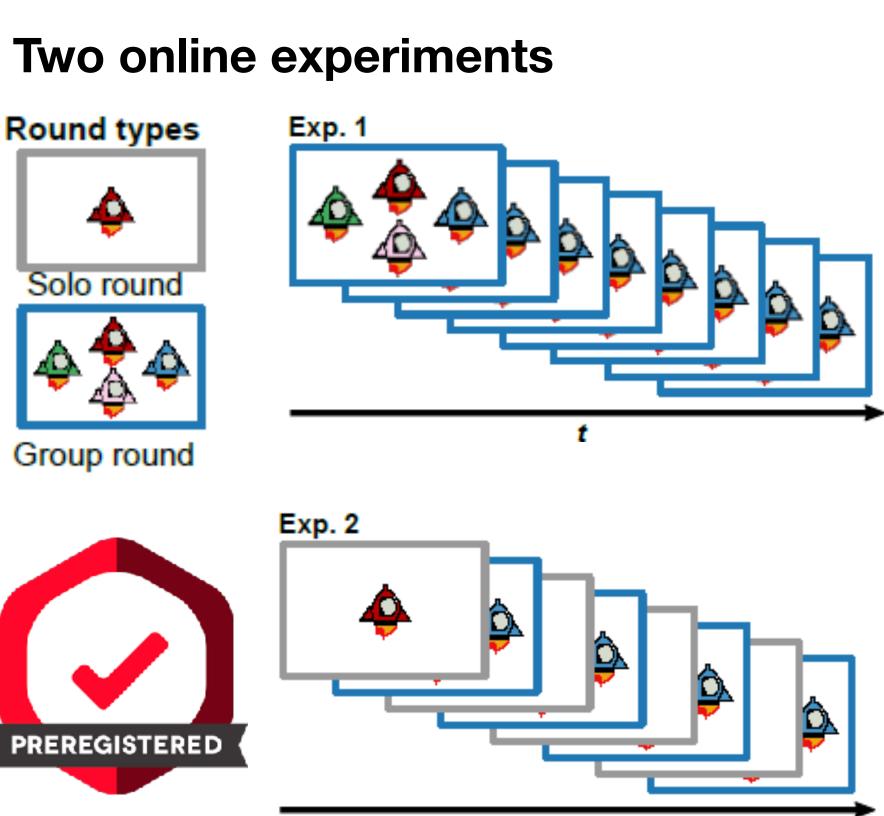
Alexandra Witt

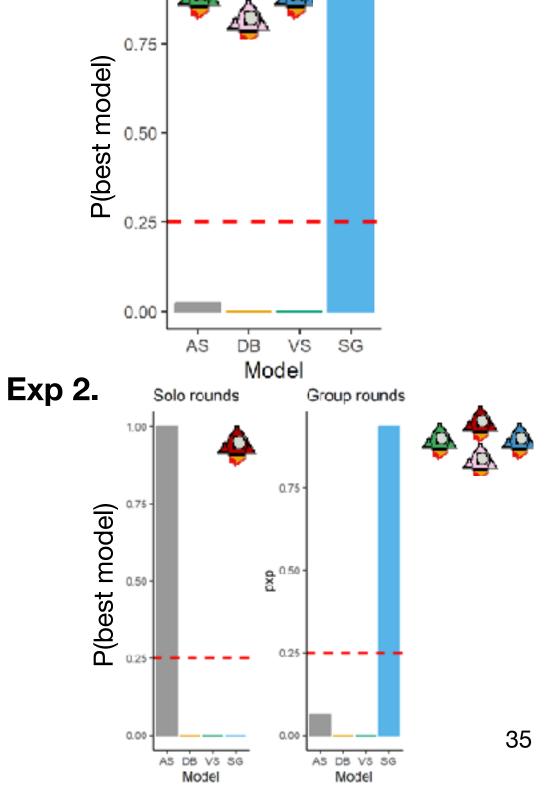
Social generalization

Witt et al., (PNAS 2024)

 Social info from people with different preferences/goals should be "taken with a grain of salt" rather than used verbatim



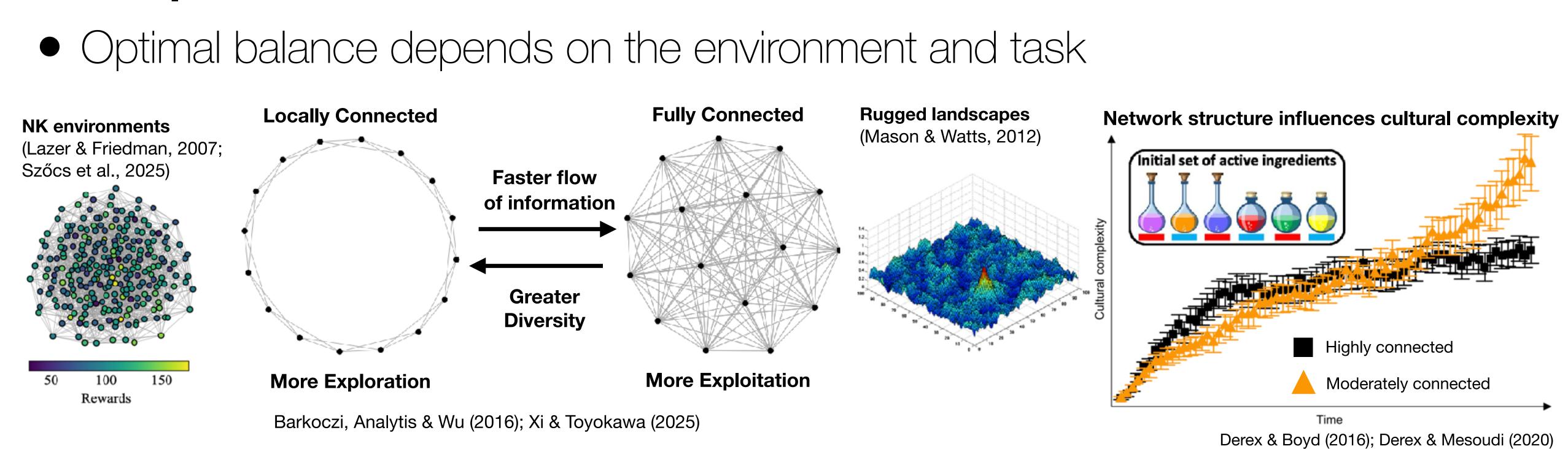




Exp 1.

Social Complexity: Network structures

- Network structures shape explore-exploit trade-off at the group level
 - Locally connected networks maintain greater diversity, and facilitate more exploration at the group level
 - Fully connected networks lead to rapid convergence and faster exploitation



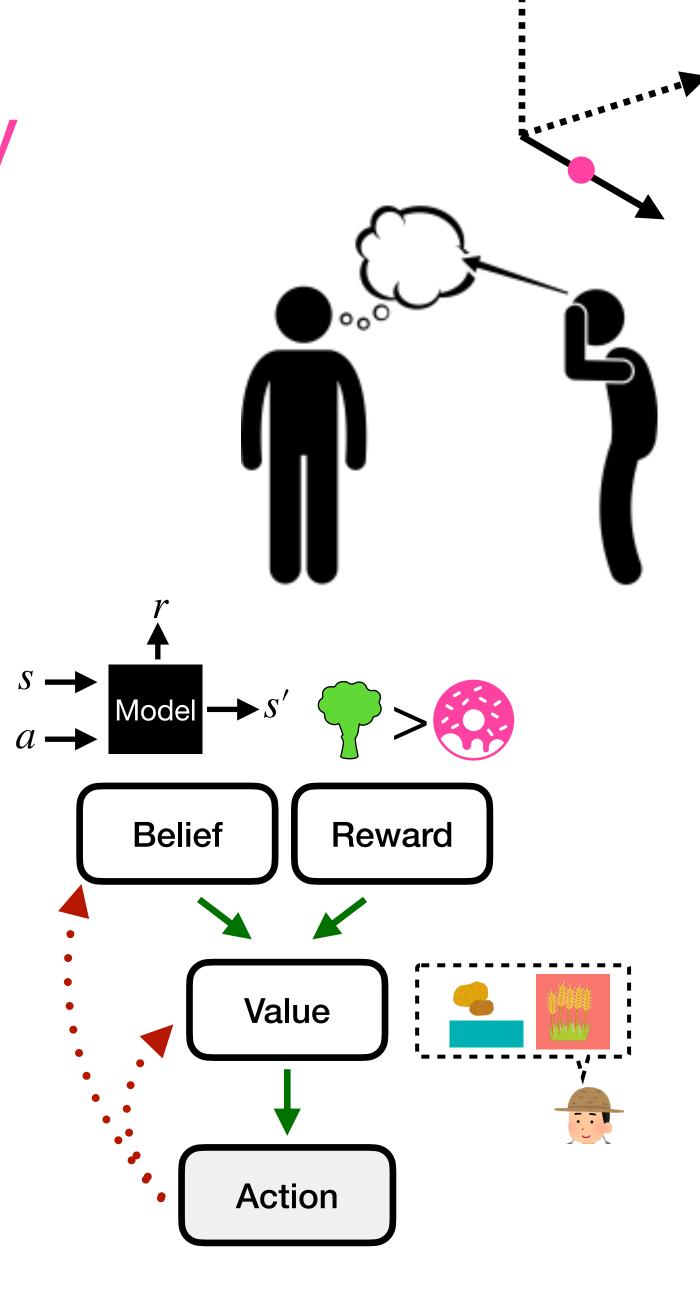
Social Complexity: Network structures

- Unlike in lab experiments, naturalistic social interactions are not explicitly structured and dynamically over through a variety of social factors
 - Thus, open challenges for inference of dynamic social interactions using GPS or bluetooth trackers, camera-based post estimation, or from field of view data

TRex: Camera-based pose Bluetooth tracking using Apple's **GPS collared Baboons** "Find My" network estimation Walter & Couzin (2021) normalization convolution pooling + dropout image grayscale Anchoring Naik et al., (2024) s (104 sec) edge weight Strandburg-Peshkin et al. (2015) Farine ... & Aplin (2024)

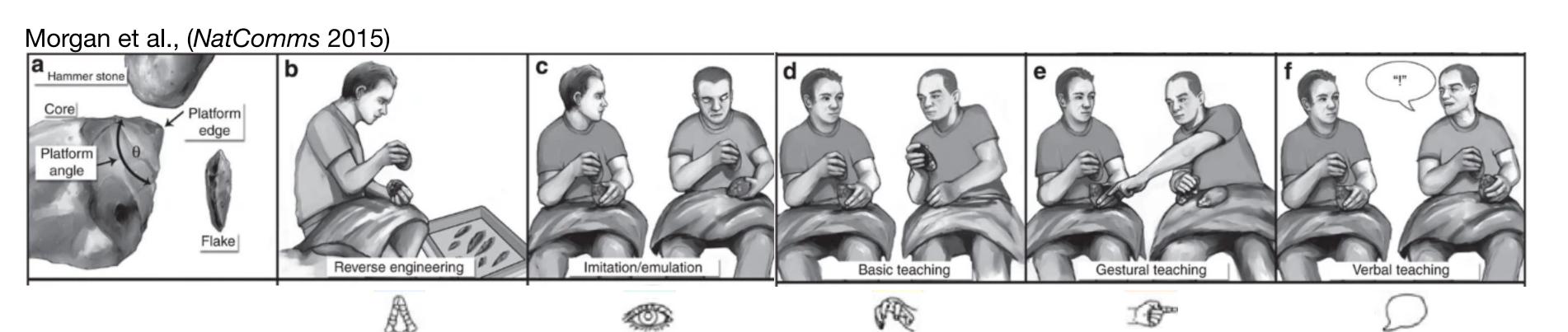
Cognitive Complexity: ToM and Pedagogy

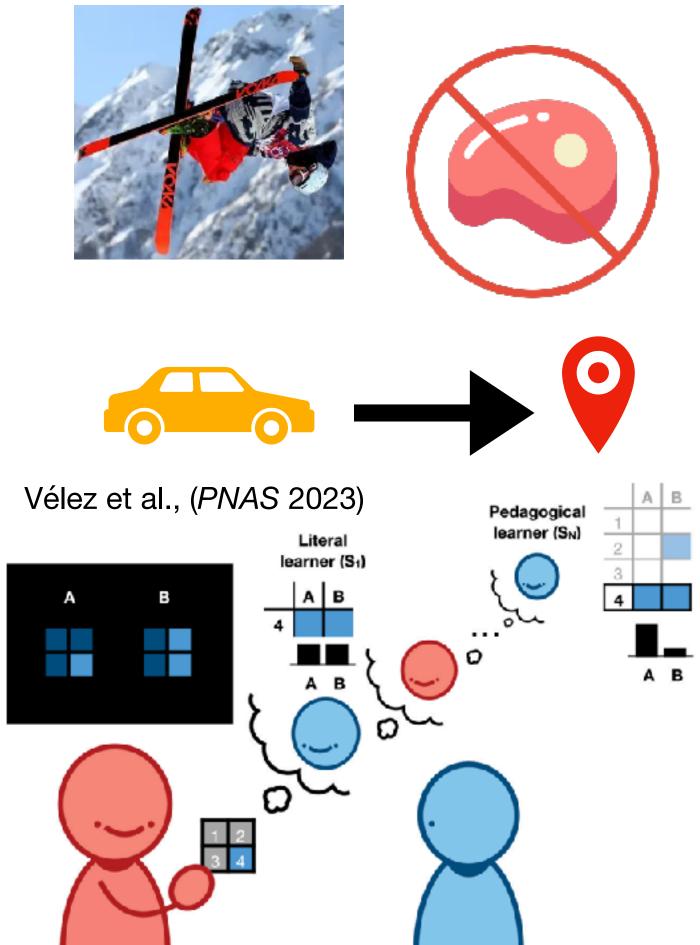
- So far, we have only described very simple social learning mechanisms...
 - Yet a key aspect of human social learning is our ability to "unpack" observed actions into imputed mental states
- This is known as *Theory of Mind* (ToM) inference and is often modeled using *Inverse reinforcement learning* (IRL)
- We can specify it at (atleast) two different levels:
 - Value Inference: Inferring Values from Actions: $P(V|A) \propto P(A|V)P(V)$
 - Model-based Inference: Inferring Beliefs about the structure of the world and intrinsic Reward specifications $P(B,R \mid A) \propto P(A \mid B,R)P(B,R)$

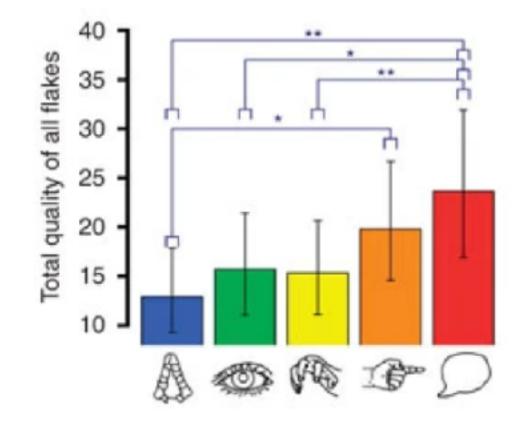


Cognitive Complexity: ToM and Pedagogy

- ToM can be instrumentally useful...
 - Inferring values and beliefs can be more flexible than choice imitation to different skills, preferences, and goals
- ... but it also plays an important role in pedagogy
 - Effective teaching requires inferring what the learner knows and doesn't know, in order to select the most informative information
- Pedagogy plays an important role in cultural transmission



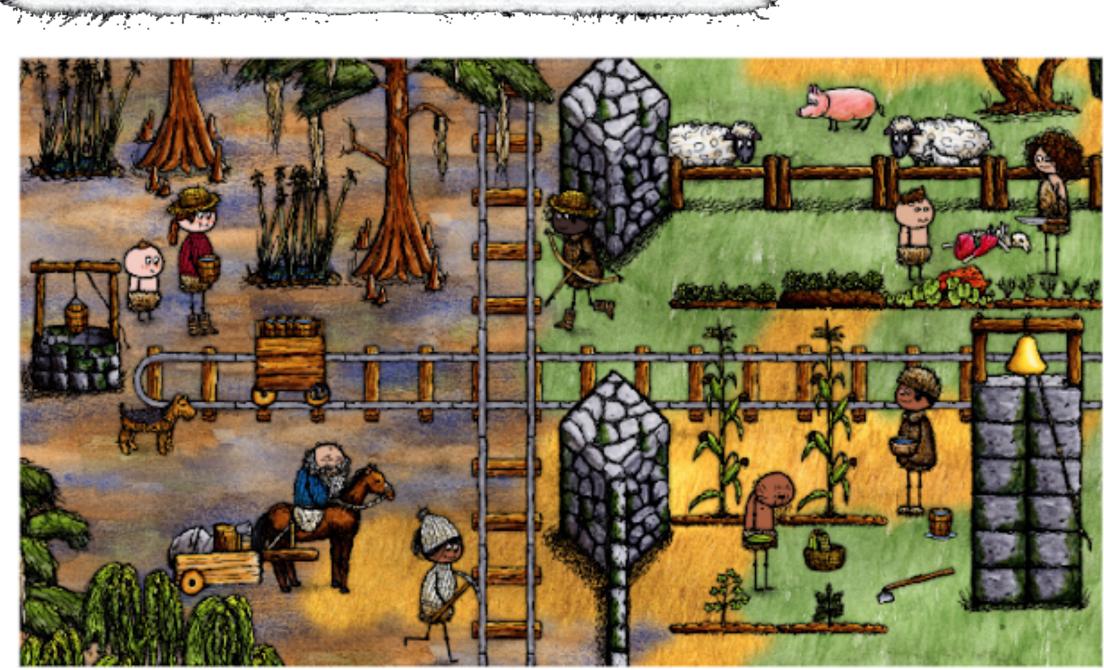




Putting it all together: Cultural evolution

Born to a random player

Dependent on online player community to survive until adulthood

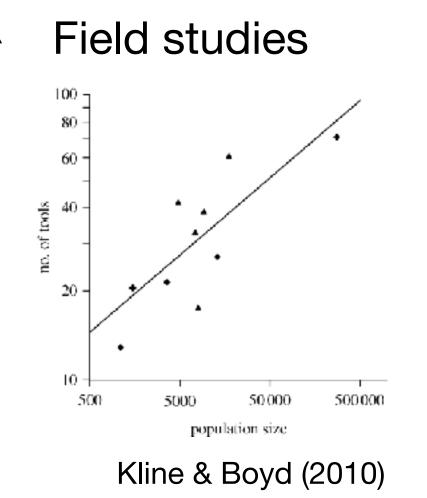


ONEHOUR

Incremental improvements lead to largescale technological progress over successive generations 40

OHOL Dataset

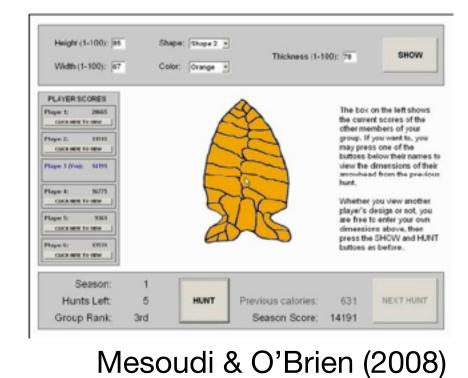
Richness of communities



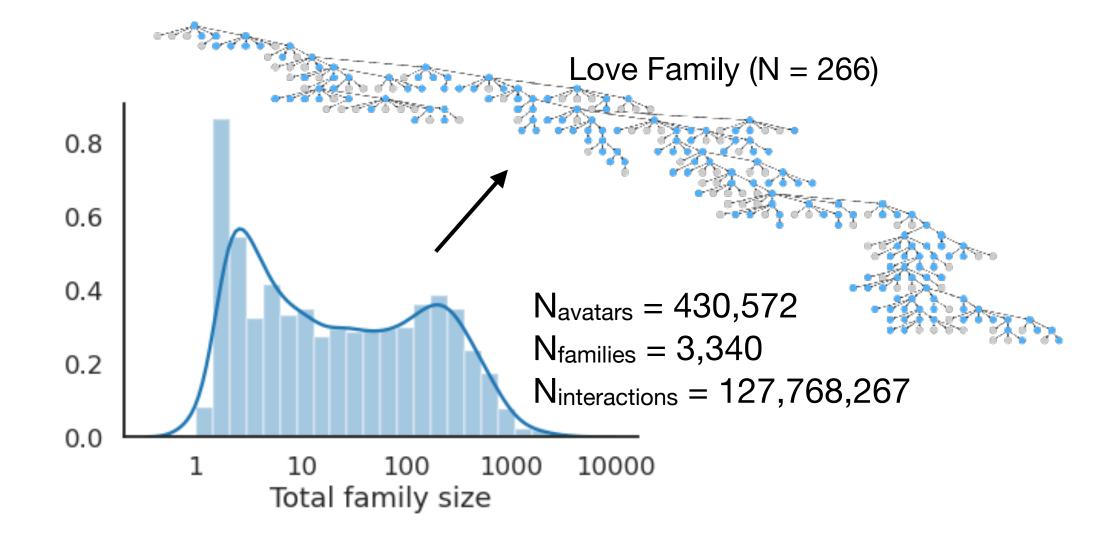
Online data ONE Hour ONE LIFE

Vélez et al., (2024)

Lab studies



Completeness of data



Technological development in a microcosm

"I spent my life entirely dedicated to taking a picture. We already had a camera, so a huge chunk of the work was already done. I just needed Cloak to make some silver nitrate, some paper, and a Camera black cloak. By the time the silver nitrate was done, I was an old man... I explained the process to an inquisitive young girl who wanted a picture." Black cloak Photograph Black dye (528 unique **Protected** components) film Paper Bowl of Damp film water Silver Bowl of Knife Sharp nitrate shavings

Wood

shavings

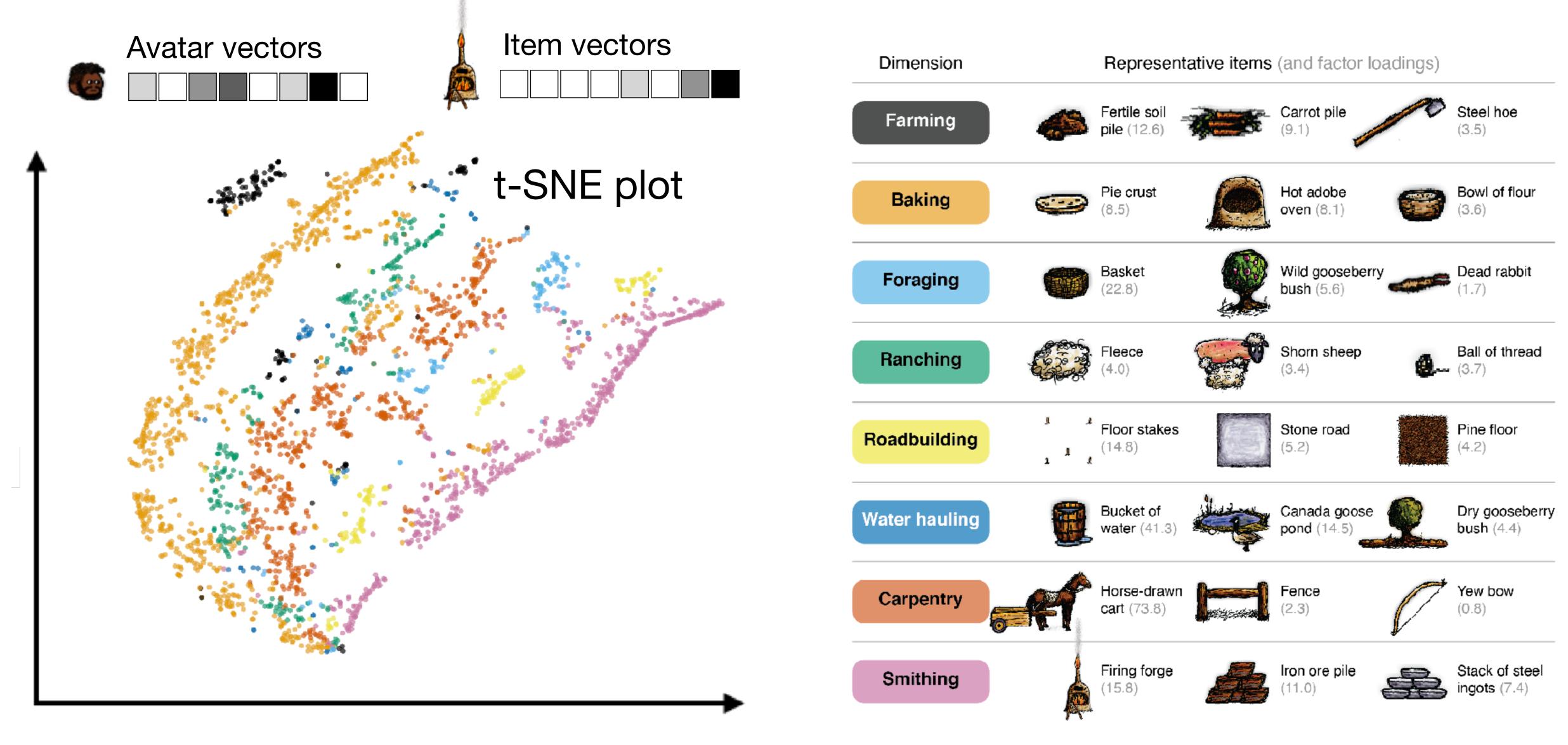
Short

stick

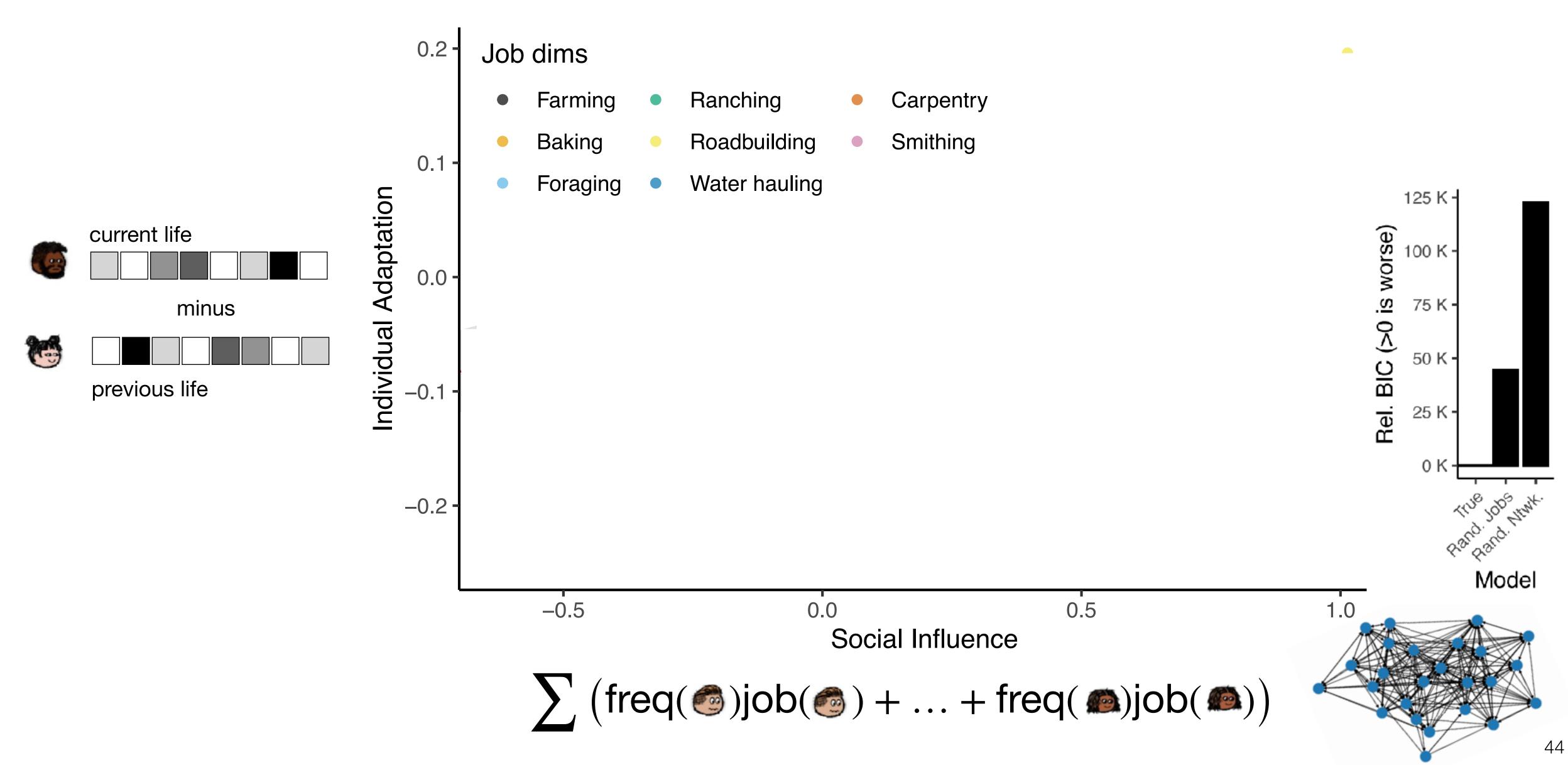
stone

Branch

What jobs do people perform in their community?



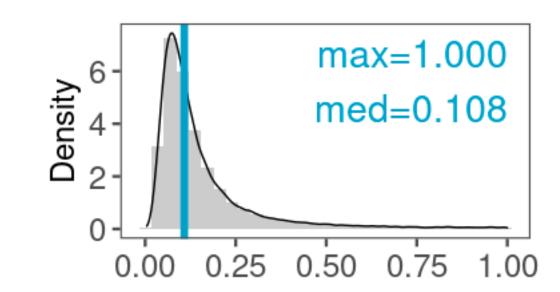
Modeling cultural transmission of expertise

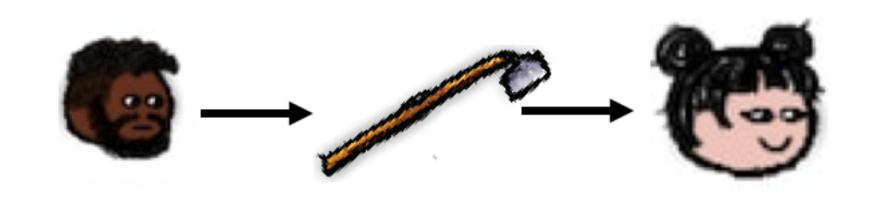


How do community characteristics affect technological development? Specialization Interactivity

Herfindal-Hirschman Index (HHI)

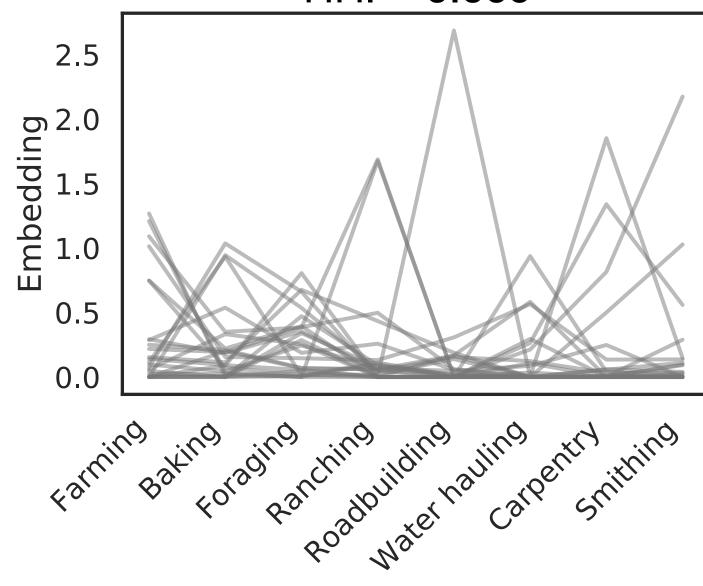
$$HHI = \sum_{i=1}^{n} s_i^2$$
 Share of community activity in job i





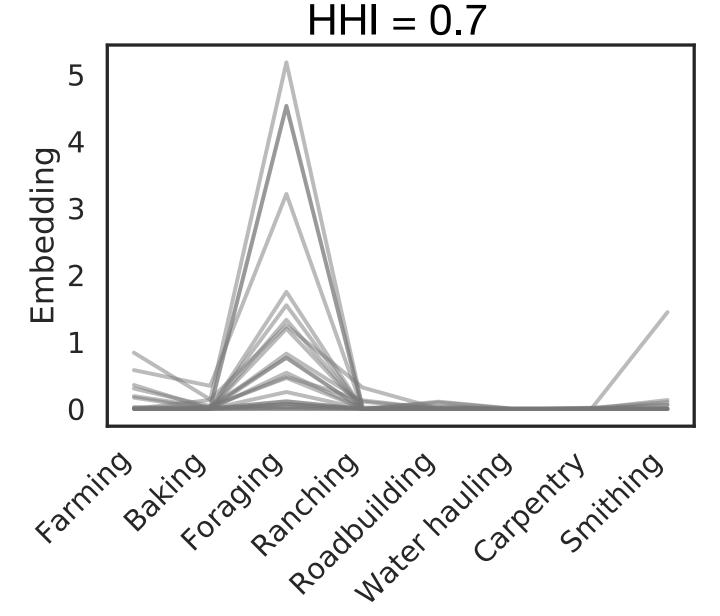
Low specialization

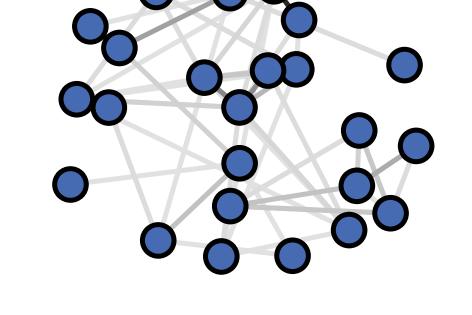
ESPERANZA family HHI = 0.009



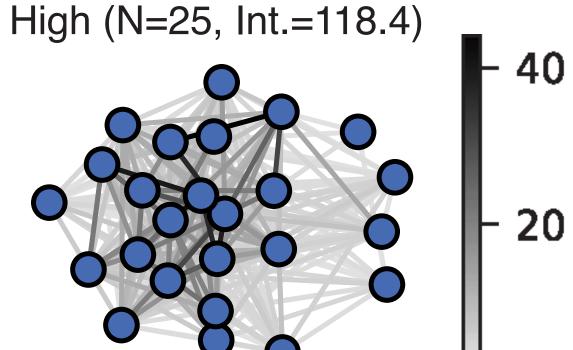
High specialization

MIA family

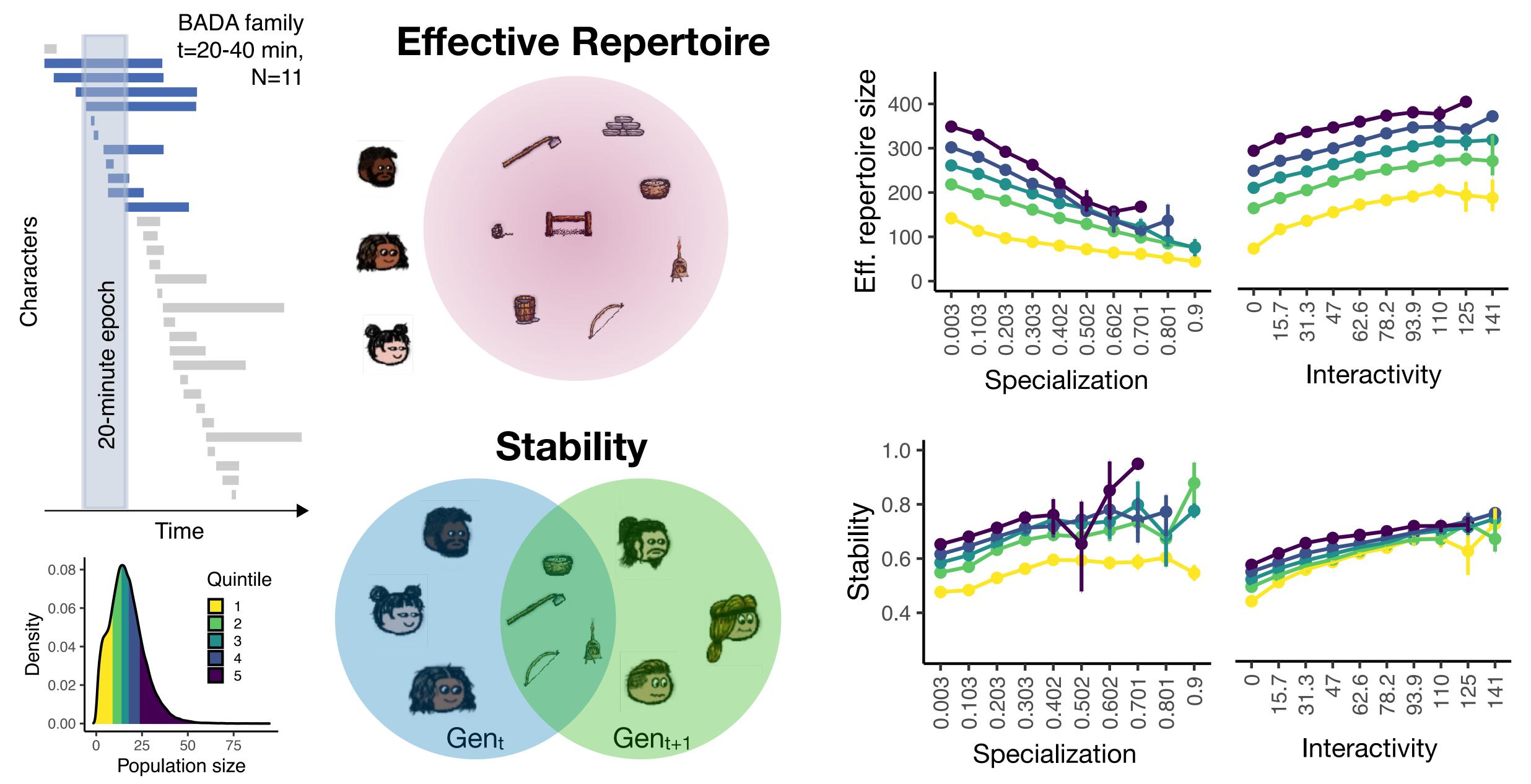




Low (N=25, Int.=10)

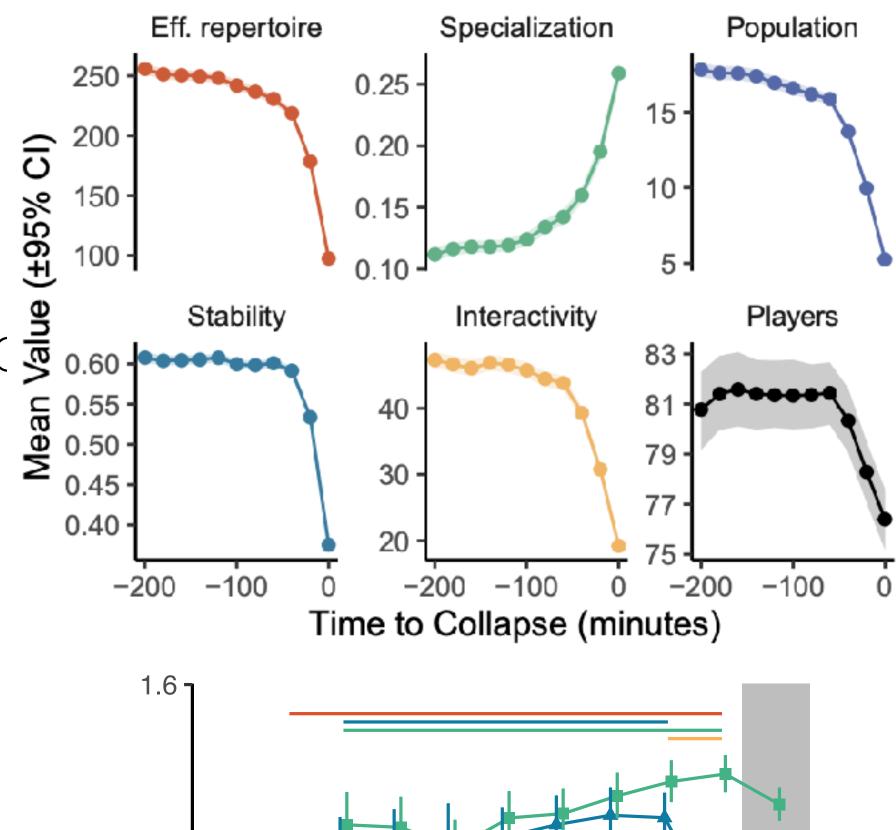


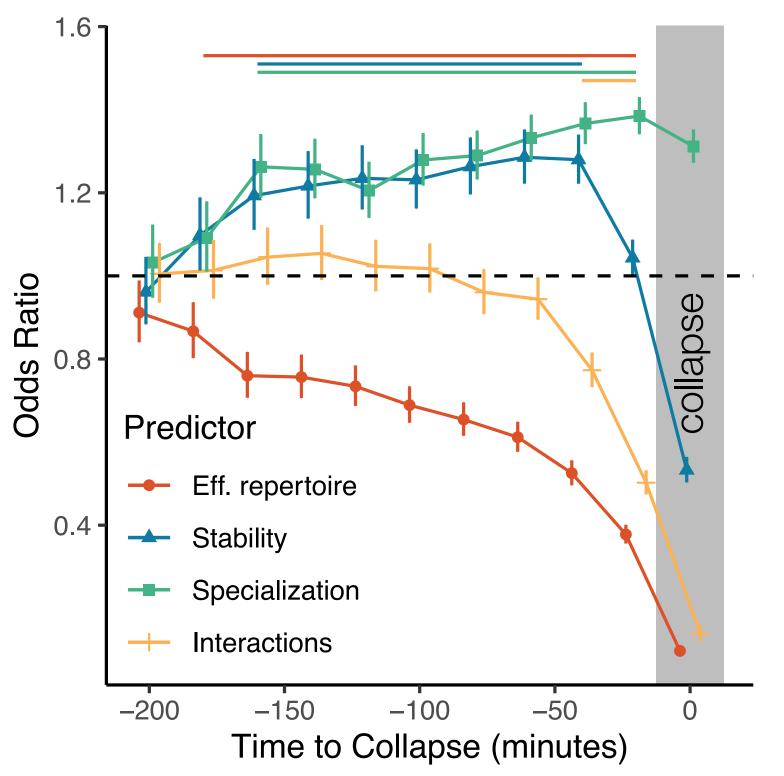
How do community characteristics affect technological development?



Predicting collapse

- Beyond predicting growth and stability, can we predictions of the stability of the predictions of the stability of the stability
- Top right: raw variables aligned at time of collapse
- Bottom right: temporal cluster analysis predicting collapse at different temporal offsets
 - Lines at the top indicate significant clusters
 - A decline in effective reportoirs is an early warning signal of collapse
 - But over-specialization is just as predictive only 1 epoch later
- Take-home: loss of diversity predicts collapse!





Summary and open challenges

- Social learning deploys a wide range of tools:
 - imitation: directly copy observed behaviors
 - value-shaping: add a heuristic bonus to observed behaviors
 - **ToM Inference**: inferring hidden value representations or hidden beliefs about the world
 - + extensions across multiple dimensions of complexity
- Yet for each mechanism we can describe verbally, we can also define a computational model that makes more precise commitments to the mechanisms of behavior
- Through experimentation and modeling, we can iteratively tweak and refine our understanding of social learning.