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Goals of Tutorial 2:

» Brisk introduction to asocial RL
* Simulating data
« Maximum likelihood estimation (MLE) of model parameters
* Predicting choices
e Social learning models
* |mitating actions
 (Combining asocial and social learning
* Social learning hierarchy (from imitation to Theory of Mind)

e Scaling up to more complex problems



Reinforcement Learning (RL)
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Reward Action
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Environment
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Sutton & Barto (1998)



A multi-armed bandit task
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RL process is nhot directly observable. It must be
statistically inferred.
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Value updating:
Q-Learning

Learning rate

0 5 10 0 5 10

Q-values Q-values

reward prediction error (RPE)

Qrp1(a) « Qfa) +alrfa) — Ofa)]



Q-values

---------------------------

Choice policy:
Softmax

Inverse temperature

l

T X CXP [ﬁQt(a)]

ok Rl &

Policy T

We want the policy
to satisfy:

...........................

Stochastic action
selection
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.- Notebook

https://cosmossummerschool.github.io/notebooks/tutorial-2-models-of-learning.html

Demo 1: Tweaking individual learning parameters

Tutorial 2 - Demo 1 - Individual learning watzru Toyokawa 2nd Charlay Wu — 2022-06-21

I \ Learring Curves

Numboer of options

Numbner of trials
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Which learning parameters (a, p) typically produce the best results?
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https://cosmossummerschool.github.io/notebooks/tutorial-2-models-of-learning.html

Likelihood function

Seyond only simulating data, we also want to use models to fit experimental data.

To do so, we first need to define a Likelihood Function:
P(D|0)

describing the probability the observed data D was generated by model parameters @

3 Heads L
| | 7 Taik
Coin Flip Model o+ 5ot ; /\ y
€ p=(QO©.. O '
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Model:  #153 T Lo
D ~ Binomial(n, 9) L -
0 = P(h) \/ 0 02 04 06 08 1 0 02 04 06 08 1

P(heads) P(h) P(h)



Log Likelihoods

P(D|6) = | | P(d,16)

log P(D|0) = 2 log P(d,|0)

Since probabilities are always <1,
convenient to express model fit us

the
no

og likelihood will always be negat

the negative log likelihood (nL

nlLL = —log P(D | 6)

The nLL expresses the amount of error or loss (aka log loss’) and will always be greater than zero.
Smaller values thus aescribe better model fits.

*Natural logs are often used by default (also written as 1n) rather than base 10 logarithms log

ve. Thus,

t's

) by Invert

X-%%

-Oor multiple data points, we need to describe the joint Ilkellhood over all observations:

[his Is much easlier using logarithms, since we can replace multiplication with summation in log
space to compute the log likelihood

ore

ng the sign:

12



Measure Formula Heads Tails
E P
' Likelihood P(D|6) 80% 20% :
Log likelihood log P(D|) -0.22 —-1.61

Negative Log

aka Log Loss Likelihood (nLL) — log P(D|©) 0.22 1.61

Used in BIC/AIC Deviance -2 log P(D|©) 0.44 3.22

13



.- Notebook

kelihood function

likelihood <- function(params, data){ def 11
nLL <- @ #initialize negative log likelihood nL
for (d in data){ #loop through data likel1

#make predictions #

From model simulation to likelihood functions

N practice, we can use code very similar to our model simulations to create a

R o

<elthood(params, data, model):
L =0 # Initialize negative log-
nood

_Loop through each observed action

predictions <- model(params) for observed_action in data:

#define true outcome
observedAction <- d
#Update nLL

nLL <- nLL -log(predictions|observedAction])

}
return(nLL)

# Make predictions

predictions = model(params)

# Pobability of the observed action

prob = predictions[observed_action]

# Update the negative log-likelihood
nLL -= np.log(prob)

return nLL

14



Fitting Models with Maximum Likelihood Estimation (MLE)

Use the likelihood function to find the parameters 0 where P(D | 0) is largest

8 Heads
2 Tails

ML
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Fitting Models with Maximum Likelihood Estimation (MLE)

Use the likelihood function to find the parameters 0 where P(D | 0) is largest
.... or where nLL Is lowest

8 Heads
2 Tails

nlL

10



nLL

Computing the MLE

Optlmlzatlon function

+ likelihood <-
. function(params
E . data) '

Minimize nLL

Types of optimization
algorithms

- Gradient descent
- Simplex methods

- Differential evolution

17



Option chosen

Choice data (Dots)
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Trial
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Search for
parameters that
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MLE for a RL model
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Maximum Likelihood Estimate (MLE)



.- Notebook

Q-learning agent

Loss landscape
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nLL

Parameter Space and Model Space

Model Space
Parameter Space

Structure

Components
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Learning from social information



Learning from social information
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Imitating actions

Frequency-dependent copying (FDC)

Probabillity of
choosing option a

TFDC(@)

P(action)

frequency of other agents
performing the same action

fla)’
. flk)?

freg(action)
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The wisdom and madness of crowds

e Social learning via imitation has frequency-

dependent fitness Rogers’ (1988) paradox
» High social learning fitness when p is T 'S"iii:if' ,:'::r;"e”
small —— Population
+ Collapse in social learning fitness whenp & - __~_ ESS
is large z —
* The best strategy depends on what other
people do, creating a dynamic strategy
selection problem
0.00 0.25 0.50 0.75 1.00

* Evolutionarily stable strategy (ESS) is an

. . . FR NCY OF ClA KNI
intermediate mixture EQUE OF SOCIAL LEARNING (p)

24



.- N()teb()()k https://cosmossummerschool.github.io/notebooks/tutorial-2-models-of-learning.html

Demo 2: Imitation and Rogers’ paradox

-Demc 2 - ia

b g R ooy
' Type

How do different ratios of individual vs. social learners change the
performance of each agent type?
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https://cosmossummerschool.github.io/notebooks/tutorial-2-models-of-learning.html

Combining imitation and
value-learning




Decision-biasing (DB) -
Mixture policy iIndividual social v
pg= (1 = V)7nd + /756c @

030

TInd i SOC
Q-learning + softmax Frequency-dependent copying
"""""""""""""""" ,}:‘ o - 'q-
Q-values ol U 4 f(l)e
explpQ(a)] > 0
f > Ak

Toyokawa et al., (NHB 2019)
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.- N()teb()()k https://cosmossummerschool.github.io/notebooks/tutorial-2-models-of-learning.html

Demo 3: Decision-biasing

10 1

Agent

Reward
WONTDUIE W —

A 0 5 10 15 20 25
Trial

Which values of y (social mixture) and 6 (conformity exponent)
typically produce the best results?
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Social influence at different levels of learning

Levels of social learning Decision-making hierarchy

Model-based ToM _
Sl Belief Reward
7~

S

Value Shaping
Value Inference (ToM) >
observations * l
N

Decision-biasing

N

Wu, Vélez, & Cushman (2022)
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Value-shaping (VS)

value bonus

O(a) < Q(a) +nf(a)

i

Social influence

Najar et al., (PLOS Bio 2020)



.- NOtebO()k https://cosmos-konstanz.github.io/notebooks/tutorial-2-models-of-learning.html#value-shaping
Demo 4. Heterogeneous groups

Tutarial 2 - Jemo 4 - Heterogenaous Mixtur
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https://cosmos-konstanz.github.io/notebooks/tutorial-2-models-of-learning.html#value-shaping

Scaling up to more diverse social learning tasks

* Environmental complexity

e Reward structure

* Social complexity

e Network structures

* Cognitive complexity
. emulation (ToM)

 Pedagogy

32



Environmental Complexity:

® Rather than assum
structure of the environment to generalize from

® (Gaussian Process (GP) regression is a versatile
approximation

Ng each action has independent rewards (Tabular RL), we can leverage the

—~

Structured rewards /

®
I
I8
s
IS
®
S

amiliar to new situations (Function Approximation)
framework for generalization using Bayesian function

e Stimuli in similar locations, with similar features, or with similar network connections are expected 1o

vield similar rewards

R Tabular RL
IS
Q)
=
)]
| II I
>
B Option

Function Approximation

e Observation = Exp. reward
— Hypothesis Uncertainty

6 |11 1929 |38 |41 |42 |40 |37 |36 |40

Reward

30 |23 |28 |40

4 35 |31 |35 | 41 ;ii (:)F)tic)r1
b e W
S : , Flour @
St
Milk @

Location Features Nodes

Wu et al., (AnnRevsPsy 2025); Wu et al., (NHB 2018); Wu et al., (PLOS CB 2020); Wu et al., (CBB 2021) 33



NOtebOOk https://cosmossummerschool.github.io/notebooks/tutorial-2-models-of-learning.html

Tabular RL (Q-learning) Function Approximation (GP)
S0 - 50 -

"
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\
<
|| ||“\ ‘.

29 - 295 1

Q-learning Reward Prediction
(-
GP Reward Prediction
(@)

-50 T T T T T -50

-25 -29 1

Option Option 34


https://cosmossummerschool.github.io/notebooks/tutorial-2-models-of-learning.html

Environmental Complexity: Structured rewards

® S0cial generalization Alexandra Wit

e Social info from people with different preferences/goals should be "taken s g
with a grain of salt” rather than used verbatm i

Socially correlated bandit task 030

‘ I Gather as much salt as
possible within 14 clicks Scientist 2 Round types

0OI0 rounc

Group round

Two online experiments

f Salt concentration is
correlated spatially...

Q}% ... as well as socially

%

P(best model)

o
[

/ Scientist 3
< > |
\ Scientist 4

PREREGISTERED

P(best model)
o | = (=] o —
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Witt et al., (PNAS 2024)




Social Complexity: Network structures { “““““““““ v

®
I
S
S
S
S
S

® Network structures shape explore-exploit trade-off at the group level A
® | ocally connected networks maintain greater diversity, and facilitate more
exploration at the group level
® ully connected networks lead to rapid convergence and taster
exploitation
® Optimal balance depends on the environment and task
NK environments '-°Ca".y Connected Fully Connected (F*I\;'ssiendgmgﬁgfgasz) Network structure influences cultural complexity
i (Initial set of active ingredients

(Lazer & Friedman, 2007;

” . . .
C b . . » .
L 0o 8 o of information ' * & LQ @ 6
o o o} . ! 1 : A / - (j
o 9 S EB Y ” g P ’

EE—— HRS 4+ 4 9 4
' < 3
. - e
Greater ' 5 W Rppttrhec
Diversity ©

B Highly connected

Moderately connected

More Exploitation
>

More Exploration

Time

Barkoczi, Analytis & Wu (2016); Xi & Toyokawa (2025)
Derex & Boyd (2016); Derex & Mesoudi (2020)



Social Complexity: Network structures

® Unlike In lab experiments, naturalistic social interactions are not explicitly
structured and dynamically over through a variety of social factors

® [hus, open challenges for inference of dynamic social interactions using GPS
Or bluetooth trackers, camera-based post estimation, or from field of view data

GPS collared Baboons Bluetooth tracking using Apple's TRex: Camera-based pose

“Fij ” estimation
Find My” network Walter & Couzin (2021)

normalization

. convolution

pooling + dropout

[ —

Strandburg-Peshkin et al. (2015)




Cognitive Complexity: ToM and Pedagogy

® S0 far, we have only described very simple social learning
mechanisms. ..

® Yot a key aspect of human social learming is our apility to
‘unpack” observed actions Into Imputed mental states

® [hisis known as Theory of Mind (ToM) inference and IS often A
modeled using Inverse reinforcement leaming (IRL) 2: Y, §?>@
® \\le can specity It at (atleast) two different levels: - -
® Value Inference: Inferring Values from Actions: 4 N\, v
P(V|A) x P(A| V)P(V) e )AL
® Model-based Inference: Inierring Beliets about the ! o
structure of the world and intrinsic Reward specifications

P(B,R|A) x P(A|B,R)P(B, R)

38
Wu, Vélez, & Cushman (2022)



Cognitive Complexity: ToM and Pedagogy

e [0M can be instrumentally usetul. ..

® [nferring values and pbeliets can be more flexible than
choice imitation to different skills, preferences, and goals  vaezetal, pras2028 .

Liloral l.amer (SN, ..
learner (S4)

® . pbutitalso plays an important role in pedagogy

N Ll O g
® ffective teaching requires inferring what the learmer knows @KOQ '
and doesn't know, in order to select the most informative %u

iNnformation

® PcOagogy plays an important role In cultural transmission

Morgan et al., (NatComms 2015) 0 — —
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Vélez et al., (PxyArxiv 2024)

Cultural evolutlon

Putting it all together:

~ 60 mlnutes real ’ume—»
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survive until adulthood technological progress over successive generations *°

Born to a random player



Richness of communities

OHOL Dataset

>

ne. of tools

Field studies

100
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Kline & Boyd (2010)

Online data
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Technological development In a microcosm

chunk of the work was already done. | just needed e — AN |
| Camera
done, | was an old man... | explained the process Ce — | |
— . components)

“| spent my life entirely dedicated to taking a
picture. We already had a camera, so a huge e
to make some silver nitrate, some paper, and a
black cloak. By the time the silver nitrate was
to an inquisitive young girl who wanted a picture.” Blacd Black cloak Q Photograph

o Protected (528 unique

fil
— Q Paper m
Bowl of
water @ S Damp fllm

Bowl of Sllver
Sharp Kmfe % shavings nitrate
stone ]7 Wood
Short shavings

Branch stick



What jobs do people perform in their community?

Avatar vectors

Dimension Representative items (and factor loadings)

. Fertile soil _3J Carrot pile Steel hoe
Farmmg ‘ pile (12.6) “ (9.1) / (3.5)

. Hot adobe Bowl of flour
Baking oven (8.1 (3.6)

. Wild gooseberry Dead rabbit
Foragmg bush (5.6 -@‘
Ranching u X S}hgrn sheep E B}a! :of thread

! * Floor stakes : 1 Stone road R Pine floor
1 2 R

- Bucket of Canada goose Dry gooseberry
Water hauling water (41.3] pond (14.5) ; bush (4.4
Carpentry o e
[/
p - Firing forge Iron ore pile Stack of steel
Smithing 15 8) (11.0] é ingots (7.4)




Modeling cultural transmission of expertise

0.21 Job dims
e Farming @ Ranching ® Carpentry
Baking Roadbuilding Smithing
0.1 -
% Foraging @ Water hauling —
current life © T
2] w5 5 10"
3 0.0- =
minus < @ 75K
. © X
. . -5 G 50 K -
previous life 2= 0.1 - m
O = 25K+
_ oC
0K-
—-0.2 1

05 0.0 0.5
Social Influence

Z (freq(@)job(@®) + ... + freq(m)job(m))




How do community characteristics affect technological development?

Specialization Interactivity
Herfindal-Hirschman Index (HHI) - max=1.000
HHI — ’ Share of community g 41 mea=0.108 ‘ — e ﬁ
— - activity in job i Q 2- |
01, . ; : .
0.00 0.25 0.50 0.75 1.00
Low specialization High specialization
ESPERANZA family MIA family
HHI = 0.009 HHI = 0.7
2.5 >
2.0 94 Low (N=25, Int.=10) High (N=25, Int.=118.4)
% 1.5 % 3 40
£1.0 |\ * 2 2 \
b 1 / 20
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PP 49



How do community characteristics affect technological development?

BADA family
t=20-40 min,
N
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Eff. repertoire Specialization Population

2301 0.25 - |
- - = 200° 0.20 [
Predicting collapse
F 100- 0.10 - 5-
. g Stability Interactivity Players
® Scyonad predicting growth and stabllity, can we predic S o.o- 83
when communities will collapse”? §8j§§i 40 o
. 30 -
(pop_size —> 0) o1 - 77-

- - - : - r /0% : :
® Top right: raw variables aligned at time of collapse 0 T e to Collapse (minutes)
e Bottom right: temporal cluster analysis predicting o

collapse at different temporal offsets
N Al

® | ines at the top indicate significant clusters

A

® A decline In effective reportoirs is an early waming
signal of collapse

Odds Ratio
o
(00)
collapse

Predictor

® But over-specialization is just as predictive only 1 | e
epOCh ‘ater Specialization

Interactions

 Take-home: loss of diversity predicts collapse!

200 _150 ~100 _50 0
Time to Collapse (minutes)
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Summary and open challenges

* Social learning deploys a wide range of tools:
* imitation: directly copy observed behaviors

* value-shaping: add a heuristic bonus to observed behaviors

* ToM Inference: inferring hidden value representations or hidden
beliefs about the world

e + extensions across multiple dimensions of complexity

Yet for each mechanism we can describe verbally, we can also define a

computational model that makes more precise commitments to the
mechanisms of behavior

* Through experimentation and modeling, we can iteratively tweak and
refine our understanding of social learning.
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