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Kirk, Thorne, & Stumpf (Curr Opin Biotech 2013)
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What makes a good model?

essentially,
all models are wrong,

but some are useful

George E. P. Box




“As simple as possible, but not simpler”

... In that empire, the art of cartography attained such perfection

that [...] the cartographers guilds struck a map of the emp

Ire

whose size was that of the empire, and which coincided point for

point with it. he following generations, who were not so fond of
study of cartography as their forebears had been, saw that that vas

the
. map

was useless, and not without some pitilessness was it, that they del
it up to the iInclemencies of sun and winters.

vered

Jorge Luis Borges, On Exactitude in Science



Temperature (F)
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“As simple as possible, but not simpler”

London’s daily temperature in 2000
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Gocdness of Fit Measures

O\' Maximum Likelihood Bayesian Model Selection
g@ Theory P(D|m, é) P(D | ml)
Practice P (D ‘ mz)
Penalizing o | | |
for parameters Akalke’s Information Bayesian Information
P Criterion (AIC) Criterion (BIC)

Prediction error/
Bayesian Cross-validation loss

Occam’s Razor

Model evidence using
Markov Chain Monte Carlo (MCMC)




Maximum likelihood estimation
(MLE)

* Goal: Quantify the goodness fit for a

single set of parameter values @ that
provides the best fit to the data:

arg max P(D | m, 0)
0

» Overfitting is avoided by penalizing
for the number of parameters (e.g.,
AIC) or using cross-validation to test
predictive power

N
OrL

vVS. Bayesian model selection /@\

Theory

 Goal: quantify how well a given model m captures
the data using the marginal likelihood-

P(D|m) = JP(D | m, O)P(0|m)do

* This integrates over all possible parameter values,
allowing for a natural penalization of more
complex models (i.e., Bayesian Occam’s Razor)

* You don’t only test the model at it’s best, but
also at it’s worse

* Intractable in most settings, so approximated
using BIC or through MCMC sampling
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Goodness of Fit Measures

Maximum Likelihood

P(D|m, 0)

Bayesian Model Selection
P(D|m,)
P(D | my)

Penalizing
for parameters

Akalke’s Information
Criterion (AIC)

Bayesian Information
Criterion (BIC)

11



Akaike’s Information Criterion (AlC)

AIC = —=21log P(D | 0) + 2k

Fit Complexity

1. Perform MLE and compute 2x the negative Log Likelihood (aka
deviance)

2. Penalize by adding an additional loss that is 2x the number of
parameters k

12



Akaike’s Information Criterion (AIC)

A measure of the relative information lost by a given model
that is trying to capture some objective reality R(x)

KL = [R(x)log R(x)dx — [R(x)log P(x|0)dx

13



Akaike’s Information Criterion (AIC)

Asymptotically, AlC is equivalent to Leave-One-Out-Cross Validation

(Stone, 1977)

» for linear regression and mixed-effects regression

e In the limit of Infinite data

... yet for it’s simplicity, AlC is commonly used for non-linear models

and certainly always short of infinite data

In practice, AlC can be considered the most lax of the goodness of fit
measures we introduce, and is more prone to preferring an overfit

model

o

Practice

Test
Data
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Bayesian Information Criterion (BIC)

BIC = - 21og P(D | §)|+ Iklog n

Fit Complexity

1. Perform MLE and compute 2x the negative Log Likelihood (aka
deviance)

2. Penalize by adding an additional loss that is the number of
parameters k times the log of the number of data points

15



Bayesian Information Criterion (BIC) Q

Bayesian model selection sometimes relies on
Bayes Factors (BFs) to quantify the evidence of

one model m; over another m,

BF = 1: no evidence for either model
BF >> 1: evidence for model 1
BF << 1; evidence for model 2

BIC approximates the marginal likelihood using
the MLE and by making some assumptions
about the prior (Schwartz, 1975)

P(D |m,)

BF,,= ———=
Y P(D | my)

P(D|m) = IP(D |60, m)P(0| m)do
P(D|m) ~ BIC

1
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Bayesian Information Criterion (BIC) i@

Practice

Bayesian interpretation is not without controversy (see Lewandowsky & Farrell,

2010 for a discussion) and the assumptions are hardly ever met or even
unpacked

In practice, BIC is generally more strict than AlC in penalizing for complexity
and less likely to prefer an overfit model

BIC=—210gP(D\9)+klogn AIC=—210gP(D\§)+2k

Note how log(n) > 2 when there are at least 8 data points

17



AlC vs. BIC

Simulated data from a Q- Q-learning vs. Value shaping
learning agent
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Goodness of Fit Measures

Maximum Likelihood

P(D|m, 0)

Bayesian Model Selection
P(D|m,)
P(D | my)

Prediction error/
Bayesian
Occam’s Razor

Cross-validation loss

Model evidence using
Markov Chain Monte Carlo (MCMC)
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Cross Validation

Rather than penalizing for complexity posthoc,
we can actively test the predictive accuracy of a
model through cross validation

1. lteratively split the data into training and test
sets

2. Estimate MLE on the training set, and then
predict out-of-sample on the test set

3. Goodness of fit is the summed negative log
likelihood of all out-of sample predictions:
=+t e+ m+ ...+ =

Slices
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Training Test
Data Data

Rounds

>
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Cross validation

. Inner loop: Iterate over data and :

Training Test compute MLE
Data Data
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Slices

Variants of Cross validation

Leave-one-round-out
cross validation: Use
the natural distinction
between independent
rounds or blocks In an
experiment

Rounds
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k-Fold cross
validation: when there
IS no natural structure In
the data, we can break it
Into k equally sized
slices

Data

Leave-one-out-cross
validation: most
extreme case, where we
iteratively leave a single
data point out of the
training set

Data points
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1.

Why Bayesian model estimation?

Not just a point estimate, but an entire
probability distribution over parameters

Rather than only assuming participants are
iIndependent samples, we can model
hierarchical relationships

Naturally avoid overfitting through Bayesian
Occam’s Razor, since we evaluate the model
across the entire range of parameters
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Posterior distribution over parameters

« Previously, we only used MLE to provide a point estimate of the best parameters 0

» Here, we want to estimate the full distribution of parameters suggested by the data
and our choice of model:

P@|D,m) x P(D\|0,m)P(0, m)

- P(0| D, m) is the posterior distribution, which we compute using Bayes’ rule
combining:

- The likelihood P(D | 6, m) of the data given a specific model and set of
parameters

- A prior P(0, m) over parameters, capturing our initial guess before we see the data

25



Markov Chain Monte Carlo

Problem: \We want to model a probability distribution that Is difficult to
compute analytically

 Solution: acquire random samples that approximate this distribution

« Markov Chain

» sequential process, where each random sample is used as a stepping
stone to generate the next sample

» Special property: Markov Chain has as it's equiliorium distribution the target
distribution we are trying to approximate

« Monte Carlo

Law of large numbers —> enough randomly drawn samples will
approximate the underlying distribution




Metropolis-Hastings MCMC

v v,

Ub [nitial Sample (&) Psuedocode
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Sample 0' from P(6' |6~ 1)

Compute likelihood of data
given these parameters

P(D|6Y

Accept the sample with
probabillity proportional to
how much of an improvement

P(D|6") is over P(D|0"—1)

o The final collection of samples

P4a

Lb "\ Prior distribution p(0) Posterior

oroximates the posterior

rameter estimate P(6 | D)

distribution P(0|D)

Lee, Sung, & Choi (2015)



Densi MCMC Reration

- —-

N(e"‘ ’0)

O “w N W s e 9w DD ®
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Step1: M(Brow, B11) = —mroriorOo) - Beta(l,1,0.906) X Binomiall10.4.99) . o0.834

Posterior(8,, ) Beta(1,1,0.429) x Binomial(10,4, 0.429)
Step 2: Acceptance probability a(B..w, 0:1) = min{r(B,..,6.:),1} = min{0.834, 1} = 0.834

Step 3: Draw u ~ Uniform(0,1) = 0.617

Stepd: If u<a(Bw,0.) = If 0617 <0.834 Then 6 = 0w = 0.306
Otherwise 6, = 6., = 0.429
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STAN

Uniform Bernoulli
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MCMC Samplers
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Posterior over parameters

aaaaa

Posterior Estimate

---. True parameters



Bayesian model comparison

Information Criteria

AIC — Akaike information criterion

AN AN AN AN,

finding the model that has

DIC — Deviance Information Criterion the highest out-of-sample Lei Zhang

. . . S redictive accurac For further study, see
WAIC — Widely Applicable Information Criterion|) L 4 COSMOS 2023 Totorial 4-

(Watanabe—Akaike information criterion

approximation to LOO

WAIC: using entire posterior distribution

I\> AIC/DIC: using point estimation

52
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Part 1 Summary

Maximum Likelihood

P(D|m, 0)

Bayesian Model Selection
P(D|m,)
P(D | my)

Penalizing
for parameters

Akalke’s Information
Criterion (AIC)

Bayesian Information
Criterion (BIC)

Prediction error/
Bayesian
Occam’s Razor

Cross-validation loss

Model evidence using
Markov Chain Monte Carlo (MCMC)
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- Notebook

https://cosmos-konstanz.qgithub.io/notebooks/tutorial-3-model-comparisons.html#model-fitting-exercise
Model fitting exercise

meteor.csv comet.csv Self-contained model-fitting code

meteorDF read_csy
round reward choice round reward choice cometDF rezd csv

k lengthlurique (c(cometDFschoice metearDF Schoice

1nit

sullmax Lela, Quec Lower

p explbetatQuec upper

p p/sumnig
return(p MLE ootim(par-init, fn - asociallLikelihood, lower lower, upper-upj

MLESvalue
MLESpar

atociallikelihood narars, datas, 000 init

names params c('aly bat3 Lower D
nLL 0 upper 1,1n7,1
ounds max(datas round
trials mex(datastrial MLE optimi{par=init, fn dblLikelihood, lower lower, upper=upper
r L:rounds MLE<valua
Qued rep(Q6 k MLESpar

1:trials

2 sottmaxiparcms | | ) ovece

trueActior subsetidata, trial==t round r'schoice

necative loglike Lihood log i pltruzAction

2l il niLl negetiveloglikelihood

QvecltrueAction Qvec | trucAction parems! 'c lpha’ subset cata

MLE optimipar vsLikelihoad, Lower lower, upper=upper
~eturni{nLL MLESvalua
MLESpar

Which model best explains each dataset?
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https://cosmos-konstanz.github.io/downloads/meteor.csv
https://cosmos-konstanz.github.io/downloads/comet.csv
https://cosmos-konstanz.github.io/notebooks/tutorial-2-models-of-learning.html#simulating-data
https://cosmos-konstanz.github.io/notebooks/tutorial-3-model-comparisons.html#model-fitting-exercise

Part 2. Robustness




Robusthess checks

1. Model recovery

* Can the data actually differentiate between the models we are considering? Could
there be model mimicry, where the wrong model can mistakenly win??

2. Parameter recovery

* Are the parameters of the model capturing distinct phenomenon”? Can changes in
one parameter be acommodated by changes in another parameter (i.e.,
misspecification)?

3. Simulated data

 Can the model generate realistic participant behavior? Is it capturing the mechanisms
that matter for performance, rather than simply fitting the noise??

35



Model recovery

a priorl  Participant
guess  estimates

\ / Simulation —stimation

Generated
Hsi —> BVV[elo[s]BN —>  data — %) —> Hflt
Desim m3

m
1. Use models to simulate data, parameterized with 0, = either an a priori guess or
from participant estimates

2. Use the same model estimation procedure on the simulated data to estimate Hﬁ-t for
each model under consideration

3. How often does the correct model provide the best fit?
36



Confusion matrix p(fit|sim)

fit model
1 2 3 4 o

026 0.26

Which alternative models mimic a given
simulation model?

Wilson & Collins (eLife 2019)

Model recovery

Inversion matrix p(simifit)
fit model

—

simulated model

g A W N

If a given model wins a model competition,
how likely is it to actually be the true
generative model?

37



Improving model recovery for nested models

 For nested models, not all ranges of parameters will yield distinct behavior

* You can run model recovery over different parameter values of each new
component of the model to find ranges with good recovery

e Use these ranges as parameter bounds for estimation

-----------------------------------------------------
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my m, nig

P(fit

P(fit==sim)

O
I
L

o
N
o
O
—a
-
n
—a
<
—A
o
o
R O —— .. -
o .
pa—
o
N

Good recoverability
Good recoverability

1072 10~ 10° 10’ 10°

Ws
Ten, Sakaki, Breit, Murayama & Wu (in prep) 38
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Parameter Recovery

Goal: Determine if parameters are distinct
and behaviorally specific

1. Use either participant parameter estimates
or some prior guess to simulate data (x-axis)

2. Run model fitting to estimate new
parameters on simulated data (y-axis)

3. Do the fit parameters correspond to the
simulated parameters?

[Bonus| Counterfactual parameter recovery:
Systematically vary simulating parameters
across a range of plausible values. Does the
entire hypothesis space recover?

Fit parameter

A 1

Generalization

r-=0.91,p<0.001

learning rate
o ~ @ _OEEE B 10°
O

Wilson & Collins (eLife 2019)

softmax temperature

100_ oo
Y La—
| 107
RN .
0.5 1 10-2 100 102
simulated «» simulated 2

Exploration bonus
r.=0.89, p <0.001

Giron et al., (2023)

Temperature
r.=0.86, p<0.001

1.00 A
0.75 -
- 0.50 1

0.25 1

a .
000+

00 05 10 15 2.0

000 005 0.10 0.15

Simulated parameter
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Simulated Performance

Goodness of fits don’t always tell the full story

¢ Sometimes you need to check that models can
reproduce important patterns of human behavior &

Can also be used to probe hidden
components of the model, such as value

representations

Compare simulated model performance to

human performance

Can the model replicate differences across
experimental manipulations or from different

populations

Choice variability

Palminteri, Wyart, & Koechlin (TICS 2017)

Falsified model Winning model
selection errors inference errors
5 57
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3 3 1
0 & " 7%
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Sequence length (number of stimuli)
Giron et al., (2023)
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General
Recipe

for Cognitive
Modeling




Not fixed, step by step instructions...
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General Recipe

. What are your hypotheses? Turn them into models

. How will you estimate the model parameters and perform model
comparison?

. Is your modeling framework robust? If not, rethink your task, the
models, and/or your modeling framework.

. [Collect data]
. Analyze and interpret results

. lest if recoverabillity still works with participant parameters

44



What can you justify?

Reviewers

45



Recommended Readings

Michael D.Lee
Eric-Jan Wagenmakers

BAYESIAN
COGNITIVE
MODELING

A Practical
Course

Texts in Statistical Science

COMPUTATIONAL MODELING
IN COGNITION sminveo®0PCES

AND
PRACT | CE

Statistical Rethinking

A Bayesian Course
with Examples in R and Stan

SECOND EDITION

March iemperature

Individual-Based Models
of Cultural Evolution

A Step-by-Step Guide Using R

Day of first blossom

Richard McElreath

CRC Press
Twkerh Franch Goup
A CHAPYMAN & 1AL BOGE

STEPHAN LEWANDOWSKY
SIMON FARRELL

CAMBRIDGE
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