Guess a number between 1 and 100 (inclusive).

We will average everyone's guesses before the tutorial, and then compute 2/3 of the average
guess.

The person who guesses closest to 2/3 of the average guess will win a bag of super-special
memo-themed m&ms (we call them... m&mos!!).

Short answer text

Histogram of Guess a number between 1 and 100 :
(Inclusive).
3

Guess a number between 1 and 100 (inclusive).

Average: 24.8

2/3 of avg: 16.5

Winner: Arthur Le Pargneux
(with a guess of 17)

Anatomy of a memo model

signal start of
memo code

using special
memo syntax

axes of output array
to be computed

l name of model scalar free parameters

@memo ! . l

def my_model[x: X, y: Yl(a, b, c):
alice: ...
bob: ... \ sequence of statements
'y about agents in the model
return

expression whose value
to compute for each cell
In returned array

(here, for each x and y)

data types & helper functions
(written in ordinary Python, not memo)

l

X = [1; 2’ 3]
Y = range(100)
def f(a):

return a + 1

Full reference available on github.com/kach/memo, under Handbook.pdf

the chooses statement (like "sample" in WebPPL)

Agent making choice Domain of choice (list, enum, or array)

l l

bob: chooses(a in Actions, wpp=<expression of a=)

I f

Name of choice "With probability proportional to"

expressions the thinks statement
+, =, k, / Agent doing the thinking
exp(mz, log(..), abs(..) |
gaussianpdf(..), .. bob: thinks]|
other agents' alice: chooses(...),
choices charlie: chooses(...),
expectation l o T
Elalice.x + bob.z]] What that agent thinks
probability

Prlalice.y >= 0]

the observes statement (like "condition” in WebPPL)

Choice being observed (square brackets are
Agent observing @ mnemonic for "someone else's choice’)

| l

bob: observes [alice.x] is y

I

What the choice is observed to actually be.

Full reference available on github.com/kach/memo, under Handbook.pdf

https://daeh.github.io/
memo-demo/

