
Average: 24.8 
2/3 of avg: 16.5 
Winner: Arthur Le Pargneux 
(with a guess of 17)

@memo
def my_model[x: X, y: Y](a, b, c):
 alice: ...
 bob: ...
 ...
 return ...

expression whose value
to compute for each cell
in returned array 
(here, for each x and y)

name of model

axes of output array
to be computed

scalar free parameters

sequence of statements 
about agents in the model

Anatomy of a memo model

X = [1, 2, 3]
Y = range(100)

def f(a):
 return a + 1

data types & helper functions 
(written in ordinary Python, not memo)

Full reference available on github.com/kach/memo, under Handbook.pdf

signal start of
memo code
using special
memo syntax

bob: chooses(a in Actions, wpp=<expression of a>)

Agent making choice

Name of choice

Domain of choice (list, enum, or array)

"With probability proportional to"

the chooses statement (like "sample" in WebPPL)

bob: thinks[
 alice: chooses(...),
 charlie: chooses(...),
 ...
]

Agent doing the thinking

What that agent thinks

the thinks statement

bob: observes [alice.x] is y

Agent observing
Choice being observed (square brackets are
a mnemonic for "someone else's choice")

What the choice is observed to actually be.

the observes statement (like "condition" in WebPPL)

E[alice.x + bob.z]
expectation

Pr[alice.y >= 0]
probability

expressions
+, -, *, /
exp(…), log(…), abs(…)
gaussianpdf(…), …

other agents' 
choices

Full reference available on github.com/kach/memo, under Handbook.pdf

https://daeh.github.io/
memo-demo/

